1.Gene expression and immunolocalization of chitin deacetylase BmCDA2 in silkworm.
Yun HE ; Yifei CHEN ; Qinglang WANG ; Ziyu ZHANG ; Haonan DONG ; Taixia SHEN ; Yong HOU ; Jing GONG
Chinese Journal of Biotechnology 2023;39(4):1655-1669
Deacetylation of chitin is closely related to insect development and metamorphosis. Chitin deacetylase (CDA) is a key enzyme in the process. However, to date, the CDAs of Bombyx mori (BmCDAs), which is a model Lepidopteran insect, were not well studied. In order to better understand the role of BmCDAs in the metamorphosis and development of silkworm, the BmCDA2 which is highly expressed in epidermis was selected to study by bioinformatics methods, protein expression purification and immunofluorescence localization. The results showed that the two mRNA splicing forms of BmCDA2, namely BmCDA2a and BmCDA2b, were highly expressed in the larval and pupal epidermis, respectively. Both genes had chitin deacetylase catalytic domain, chitin binding domain and low density lipoprotein receptor domain. Western blot showed that the BmCDA2 protein was mainly expressed in the epidermis. Moreover, fluorescence immunolocalization showed that BmCDA2 protein gradually increased and accumulated with the formation of larval new epidermis, suggesting that BmCDA2 may be involved in the formation or assembly of larval new epidermis. The results increased our understandings to the biological functions of BmCDAs, and may facilitate the CDA study of other insects.
Animals
;
Bombyx/metabolism*
;
Metamorphosis, Biological/genetics*
;
Larva/metabolism*
;
Gene Expression
;
Insect Proteins/metabolism*
;
Chitin
2.The regulatory relationship between RagA and Nprl2 in Drosophila gut development.
Chunmei NIU ; Jianwen GUAN ; Guoqiang MENG ; Ying ZHOU ; Youheng WEI
Chinese Journal of Biotechnology 2023;39(4):1747-1758
The gastrointestinal tract is the largest digestive organ and the largest immune organ and detoxification organ, which is vital to the health of the body. Drosophila is a classic model organism, and its gut is highly similar to mammalian gut in terms of cell composition and genetic regulation, therefore can be used as a good model for studying gut development. target of rapmaycin complex 1 (TORC1) is a key factor regulating cellular metabolism. Nprl2 inhibits TORC1 activity by reducing Rag GTPase activity. Previous studies have found that nprl2 mutated Drosophila showed aging-related phenotypes such as enlarged foregastric and reduced lifespan, which were caused by over-activation of TORC1. In order to explore the role of Rag GTPase in the developmental defects of the gut of nprl2 mutated Drosophila, we used genetic hybridization combined with immunofluorescence to study the intestinal morphology and intestinal cell composition of RagA knockdown and nprl2 mutated Drosophila. The results showed that RagA knockdown alone could induce intestinal thickening and forestomach enlargement, suggesting that RagA also plays an important role in intestinal development. Knockdown of RagA rescued the phenotype of intestinal thinning and decreased secretory cells in nprl2 mutants, suggesting that Nprl2 may regulate the differentiation and morphology of intestinal cells by acting on RagA. Knockdown of RagA did not rescue the enlarged forestomach phenotype in nprl2 mutants, suggesting that Nprl2 may regulate forestomach development and intestinal digestive function through a mechanism independent of Rag GTPase.
Animals
;
Drosophila/genetics*
;
Mechanistic Target of Rapamycin Complex 1/metabolism*
;
Mammals/metabolism*
;
Carrier Proteins
;
Tumor Suppressor Proteins/metabolism*
;
Drosophila Proteins/genetics*
3.Neuroprotective effect of ginsenoside Re on drosophila model of Parkinson's disease.
Yan XU ; Xue MENG ; Wen-Xue ZHAO ; Dong-Guang LIU ; Jian-Guo ZHU ; Ru YAO ; Jing-Chun YAO ; Gui-Min ZHANG
China Journal of Chinese Materia Medica 2023;48(7):1927-1935
This study aims to explore the neuroprotective mechanism of ginsenoside Re(GS-Re) on drosophila model of Parkinson's disease(PD) induced by rotenone(Rot). To be specific, Rot was used to induce PD in drosophilas. Then the drosophilas were grouped and respectively treated(GS-Re: 0.1, 0.4, 1.6 mmol·L~(-1); L-dopa: 80 μmol·L~(-1)). Life span and crawling ability of drosophilas were determined. The brain antioxidant activity [content of catalase(CAT), malondialdehyde(MDA), reactive oxygen species(ROS), superoxide dismutase(SOD)], dopamine(DA) content, and mitochondrial function [content of adenosine triphosphate(ATP), NADH:ubiquinone oxidoreductase subunit B8(NDUFB8) Ⅰ activity, succinate dehydrogenase complex, subunit B(SDHB) Ⅱ activity] were detected by enzyme-linked immunosorbent assay(ELISA). The number of DA neurons in the brains of drosophilas was measured with the immunofluorescence method. The levels of NDUFB8 Ⅰ, SDHB Ⅱ, cytochrome C(Cyt C), nuclear factor-E2-related factor 2(Nrf2), heme oxygenase-1(HO-1), B-cell lymphoma/leukemia 2(Bcl-2)/Bcl-2-assaciated X protein(Bax), and cleaved caspase-3/caspase-3 in the brain were detected by Western blot. The results showed that model group [475 μmol·L~(-1) Rot(IC_(50))] demonstrated significantly low survival rate, obvious dyskinesia, small number of neurons and low DA content in the brain, high ROS level and MDA content, low content of SOD and CAT, significantly low ATP content, NDUFB8 Ⅰ activity, and SDHB Ⅱ activity, significantly low expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax, large amount of Cyt C released from mitochondria to cytoplasm, low nuclear transfer of Nrf2, and significantly high expression of cleaved caspase-3/caspase-3 compared with the control group. GS-Re(0.1, 0.4, and 1.6 mmol·L~(-1)) significantly improved the survival rate of PD drosophilas, alleviated the dyskinesia, increased DA content, reduced the loss of DA neurons, ROS level, and MDA content in brain, improved content of SOD and CAT and antioxidant activity in brain, maintained mitochondrial homeostasis(significantly increased ATP content and activity of NDUFB8 Ⅰ and SDHB Ⅱ, significantly up-regulated expression of NDUFB8 Ⅰ, SDHB Ⅱ, and Bcl-2/Bax), significantly reduced the expression of Cyt C, increased the nuclear transfer of Nrf2, and down-regulated the expression of cleaved caspase-3/caspase-3. In conclusion, GS-Re can significantly relieve the Rot-induced cerebral neurotoxicity in drosophilas. The mechanism may be that GS-Re activates Keap1-Nrf2-ARE signaling pathway by maintaining mitochondrial homeostasis, improves antioxidant capacity of brain neurons, then inhibits mitochondria-mediated caspase-3 signaling pathway, and the apoptosis of neuronal cells, thereby exerting the neuroprotective effect.
Animals
;
Reactive Oxygen Species/metabolism*
;
Antioxidants/pharmacology*
;
Oxidative Stress
;
NF-E2-Related Factor 2/metabolism*
;
Caspase 3/metabolism*
;
Parkinson Disease/genetics*
;
bcl-2-Associated X Protein/metabolism*
;
Neuroprotective Agents/pharmacology*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Drosophila/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Apoptosis
;
Superoxide Dismutase/metabolism*
;
Adenosine Triphosphate/pharmacology*
4.Preparation of silk fibroin/hyaluronic acid composite hydrogel based on thiol-ene click chemistry.
Leidan CHEN ; Mingqiang ZHONG ; Jinyi CHEN ; Zhenjie LIU ; Tairong KUANG ; Tong LIU ; Feng CHEN
Journal of Zhejiang University. Medical sciences 2023;52(3):285-295
OBJECTIVES:
To design and prepare silk fibroin/hyaluronic acid composite hydrogel.
METHODS:
The thiol modified silk fibroin and the double-bond modified hyaluronic acid were rapidly cured into gels through thiol-ene click polymerization under ultraviolet light condition. The grafting rate of modified silk fibroin and hyaluronic acid was characterized by 1H NMR spectroscopy; the gel point and the internal microstructure of hydrogels were characterized by rheological test and scanning electron microscopy; the mechanical properties were characterized by compression test; the swelling rate and degradation rate were determined by mass method. The hydrogel was co-cultured with the cells, the cytotoxicity was measured by the lactate dehydrogenase method, the cell adhesion was measured by the float count method, and the cell growth and differentiation on the surface of the gel were observed by scanning electron microscope and fluorescence microscope.
RESULTS:
The functional group substitution degrees of modified silk fibroin and hyaluronic acid were 17.99% and 48.03%, respectively. The prepared silk fibroin/hyaluronic acid composite hydrogel had a gel point of 40-60 s and had a porous structure inside the gel. The compressive strength was as high as 450 kPa and it would not break after ten cycles. The water absorption capacity of the composite hydrogel was 4-10 times of its own weight. Degradation experiments showed that the hydrogel was biodegradable, and the degradation rate reached 28%-42% after 35 d. The cell biology experiments showed that the cytotoxicity of the composite gel was low, the cell adhesion was good, and the growth and differentiation of the cells on the surface of the gel were good.
CONCLUSIONS
The photocurable silk fibroin/hyaluronic acid composite hydrogel can form a gel quickly, and has excellent mechanical properties, adjustable swelling rate and degradation degree, good biocompatibility, so it has promising application prospects in biomedicine.
Fibroins/chemistry*
;
Hydrogels/chemistry*
;
Hyaluronic Acid/chemistry*
;
Biocompatible Materials/chemistry*
;
Click Chemistry
;
Sulfhydryl Compounds
;
Silk/chemistry*
5.Resveratrol and Sir2 Reverse Sleep and Memory Defects Induced by Amyloid Precursor Protein.
Yuping HAO ; Lingzhan SHAO ; Jianan HOU ; Yan ZHANG ; Yuqian MA ; Jinhao LIU ; Chuan XU ; Fujun CHEN ; Li-Hui CAO ; Yong PING
Neuroscience Bulletin 2023;39(7):1117-1130
Resveratrol (RES), a natural polyphenolic phytochemical, has been suggested as a putative anti-aging molecule for the prevention and treatment of Alzheimer's disease (AD) by the activation of sirtuin 1 (Sirt1/Sir2). In this study, we tested the effects of RES and Sirt1/Sir2 on sleep and courtship memory in a Drosophila model by overexpression of amyloid precursor protein (APP), whose duplications and mutations cause familial AD. We found a mild but significant transcriptional increase of Drosophila Sir2 (dSir2) by RES supplementation for up to 17 days in APP flies, but not for 7 days. RES and dSir2 almost completely reversed the sleep and memory deficits in APP flies. We further demonstrated that dSir2 acts as a sleep promotor in Drosophila neurons. Interestingly, RES increased sleep in the absence of dSir2 in dSir2-null mutants, and RES further enhanced sleep when dSir2 was either overexpressed or knocked down in APP flies. Finally, we showed that Aβ aggregates in APP flies were reduced by RES and dSir2, probably via inhibiting Drosophila β-secretase (dBACE). Our data suggest that RES rescues the APP-induced behavioral deficits and Aβ burden largely, but not exclusively, via dSir2.
Animals
;
Alzheimer Disease/metabolism*
;
Amyloid beta-Peptides
;
Amyloid beta-Protein Precursor/metabolism*
;
Drosophila/physiology*
;
Drosophila Proteins/metabolism*
;
Resveratrol/pharmacology*
;
Sirtuin 1
;
Sleep
6.Optimization of retinin expression and the application with wax emulsion in nanocoatings.
Yuqing LIU ; Yuanyuan XIA ; Wei SHEN ; Haiquan YANG ; Xianzhong CHEN
Chinese Journal of Biotechnology 2023;39(10):4258-4274
Anti-reflective nanocoatings that mimic the eyes of fruit flies are biodegradable materials with great market potential for a variety of optical devices that require anti-reflective properties. Microbial expression of retinin provides a new idea for the preparation of nanocoatings under mild conditions compared to physicochemical methods. However, the current expression level of retinin, the key to anti-reflective coating, is low and difficult to meet mass production. In this study, we analyzed and screened the best expression hosts for Drosophila-derived retinin protein, and optimized its expression. Chinese hamster ovary (CHO) cells were identified as the efficient expression host of retinin, and purified retinin protein was obtained. At the same time, the preparation method of lanolin nanoemulsion was explored, and the best anti-reflective ability of the nano-coating was determined when the ratio of specific concentration of retinin protein and wax emulsion was 16:4, the pH of the nano-coating formation system was 7.0, and the temperature was 30 ℃. The enhanced antireflective ability and reduced production cost of artificial antireflective nanocoatings by determining the composition of nanocoatings and optimizing the concentration, pH and temperature of system components may facilitate future application of artificial green degradable antireflective coatings.
Animals
;
Cricetinae
;
CHO Cells
;
Emulsions
;
Cricetulus
;
Drosophila
;
Eye Proteins
;
Drosophila Proteins
7.Characterization and immunofluorescence localization analysis of carboxypeptidase A in molt fluid of silkworm.
Yuhao ZHANG ; Yuejing CHENG ; Lingzhen YANG ; Qinglang WANG ; Jing GONG ; Yong HOU
Chinese Journal of Biotechnology 2023;39(12):4950-4964
Molting is an important physiological phenomenon of many metamorphosis insects, during which the old and new epidermis are separated by enzymes present in the molting fluid. Various proteomic studies have discovered the presence of Bombyx mori carboxypeptidase A (Bm-CPA) in the molting fluid of silkworm, but its function remains unclear. In order to better understand the role of Bm-CPA in the molting process of silkworm, Bm-CPA was analyzed by bioinformatics analysis, real-time fluorescence quantitative PCR, antibody preparation, immunofluorescence staining, and expression in Pichia pastoris. The results showed that Bm-CPA had a conserved M14 zinc carboxypeptidase domain and glycosylation site. Its expression was regulated by ecdysone 20E, and large expression was observed in the epidermis of the upper cluster stage. Immunofluorescence staining showed that Bm-CPA was enriched in the epidermis during the molting stage, and the inhibitor of Bm-CPA led to the larval death due to the inability to molt. We also successfully obtained a large number of recombinant Bm-CPA proteins by Pichia pastoris expression in vitro. These results may facilitate further understanding the molting development process of silkworm.
Animals
;
Molting/genetics*
;
Bombyx/genetics*
;
Carboxypeptidases A/metabolism*
;
Proteomics
;
Larva/metabolism*
;
Fluorescent Antibody Technique
;
Insect Proteins/metabolism*
8.Genome-wide identification of the BmAKR gene family in the silkworm (Bombyx mori) and their expression analysis in diapause eggs and nondiapause eggs.
Jing GONG ; Wei ZHANG ; Qinglang WANG ; Zijian ZHU ; Jiaxin PANG ; Yong HOU
Chinese Journal of Biotechnology 2023;39(12):4982-4995
The aldo-keto reductase super family (AKRs) has a wide range of substrate specificity. However, the systematic identification of insect AKR gene family members has not been reported. In this study, bioinformatics methods were used to predict the phylogenetic evolution, physical and chemical properties, chromosome location, conserved motifs, and gene structure of AKR family members in Bombyx mori (BmAKR). Transcriptome data or quantitative real time polymerase chain reaction (qRT-PCR) were used to analyze the expression level of BmAKR genes during different organizational periods and silkworm eggs in different developmental states. Moreover, Western blotting was used to detect the expression level of the BmAKR in silkworm eggs. The results showed that 11 BmAKR genes were identified. These genes were distributed on 4 chromosomes of the silkworm genome, all of which had the (α/β) 8-barrel motif, and their physical and chemical characteristics were relatively similar. Phylogenetic analysis showed that the BmAKR genes could be divided into 2 subgroups (AKR1 and AKR2). Transcriptome data analysis showed that the expression of BmAKR genes were quite different in different tissues and periods. Moreover, the expression analysis of BmAKR genes in silkworm eggs showed that some genes were expressed significantly higher in nondiapause eggs than in diapause eggs; but another gene, BmAKR1-1, was expressed significantly higher in diapause eggs than in nondiapause eggs. The detection of protein level found that the difference trend of BmAKR1-1 in diapause eggs and non-diapause eggs was consistent with the results of qRT-PCR. In conclusion, BmAKR1-1 was screened out as candidates through the identification and analysis of the BmAKR genes in silkworm, which may regulate silkworm egg development is worthy of further investigation.
Animals
;
Bombyx/metabolism*
;
Phylogeny
;
Diapause
;
Genes, Insect
;
Gene Expression Profiling
;
Insect Proteins/metabolism*
9.Analyzing the evolution of insect TMED gene and the expression pattern of silkworm TMED gene.
Chunyang WANG ; Yu GUO ; Haiyin LI ; Ping CHEN
Chinese Journal of Biotechnology 2023;39(12):4996-5013
Transmembrane emp24 domain (TMED) gene is closely related to immune response, signal transduction, growth and disease development in mammals. However, only the Drosophila TMED gene has been reported on insects. We identified the TMED family genes of silkworm, Tribolium castaneum, tobacco moth and Italian bee from their genomes, and found that the TMED family gene composition patterns of one α-class, one β-class, one δ-class and several γ-classes arose in the common ancestor of pre-divergent Hymenoptera insects, while the composition of Drosophila TMED family members has evolved in a unique pattern. Insect TMED family γ-class genes have evolved rapidly, diverging into three separate subclasses, TMED6-like, TMED5-like and TMED3-like. The TMED5-like gene was lost in Hymenoptera, duplicated in the ancestors of Lepidoptera and duplicated in Drosophila. Insect TMED protein not only has typical structural characteristics of TMED, but also has obvious signal peptide. There are seven TMED genes in silkworm, distributed in six chromosomes. One of seven is single exon and others are multi-exons. The complete open reading frame (ORF) sequences of seven TMED genes of silkworm were cloned from larval tissues and registered in GenBank database. BmTMED1, BmTMED2 and BmTMED6 were expressed in all stages and tissues of the silkworm, and all genes were expressed in the 4th and 5th instar and silk gland of the silkworm. The present study revealed the composition pattern of TMED family members, their γ class differentiation and their evolutionary history, providing a basis for further studies on TMED genes in silkworm and other insects.
Animals
;
Bombyx/metabolism*
;
Genes, Insect/genetics*
;
Moths/metabolism*
;
Insecta/metabolism*
;
Drosophila
;
Insect Proteins/metabolism*
;
Phylogeny
;
Mammals/genetics*
10.Quality status of Bombyx Batryticatus and suggestions for Chinese Pharmacopoeia (2025).
Yong-Hong YANG ; Mei WANG ; Ye-Min CHONG ; Hong-Mei DENG ; Meng-Lian JIANG ; Zhuan-Zhen YANG ; Yu-Hao YAN ; Jing-Liang QI ; Min LI ; Yan GOU
China Journal of Chinese Materia Medica 2023;48(15):4087-4096
To understand the current quality status and rearing situation of Bombyx Batryticatus, the authors collected 102 batches of Bombyx Batryticatus from different main producing areas and five major Chinese medicine markets from 2016 to 2018, and measured the properties and quality of the silk gland, to clarify the quality status of Bombyx Batryticatus from different producing areas and markets. In addition, 35 batches of Bombyx Batryticatus from 2019 to 2022 were used to verify the silk gland after revision. Moreover, Beauveria Bassiana was inoculated in the silkworm of 4-5 instars, and standardized rearing was carried out until they die. The death rate and the quality of Bombyx Batryticatus were measured to determine the differences in Bombyx Batryticatus of different instars, and explore the rationality of the infection age of Bombyx Batryticatus in Chinese Pharmacopoeia(2020). The results revealed that in the 102 batches of Bombyx Batryticatus, the qualification rate of silk gland was low; the content of total ash far exceeded the standard; the content of beauvericin varied greatly. The qualification rate of the silk gland of the 35 batches of Bombyx Batryticatus was only 47.49%, which could be increased to 73.00% if the number of silk gland was 2 to 4. The death rate of Bombyx Batryticatus at different infection ages was quite different, with uneven quality. Generally, the yield of Bombyx Batryticatus inoculated on the first day of the fifth instar was high with good quality. Therefore, in combination with the quality and actual production of Bombyx Batryticatus, the following suggestions were proposed for revision of Bombyx Batryticatus in Chinese Pharmacopoeia(2025): The number of silk gland should be revised as 2-4 bright brown or bright black silk glands, after which, the quality of Bombyx Batryticatus could be guaranteed, and the "quality identification based on character" could also be reflected scientifically; the content determination index that the content of beauvericin shall not be less than 0.017% should be added to better control the quality of Bombyx Batryticatus; the infection age should be revised as the first day of the fifth instar to narrow the age span, which could better fit the actual production and ensure the quality of Bombyx Batryticatus.
Animals
;
Bombyx
;
Medicine, East Asian Traditional
;
Silk
;
Larva

Result Analysis
Print
Save
E-mail