1.Role of Non-coding RNAs in Rheumatoid Arthritis and Supervision Mechanism of Chinese Medicine.
Shu LI ; Hao-Xiang FANG ; Lei WAN ; Jian LIU
Chinese journal of integrative medicine 2025;31(7):649-659
The prevalence of rheumatoid arthritis (RA) has sharply increased in recent years, posing a serious threat to human health. RA is characterized as a chronic, multisystem disease with morning stiffness and symmetric small joint pain. However, its fundamental processes are poorly understood. With the advancements in molecular biology techniques, a growing body of research indicates that numerous non-coding RNAs (ncRNAs) are essential for the pathogenesis of RA. These ncRNAs not only contribute to the onset of RA but also play a role in the pathological processes of RA development, including synovial immune inflammation and bone destruction. Chinese medicine (single compounds, single herbs, and compound formulae, as well as non-drug therapies such as acupuncture and moxibustion), offer significant benefits for treating RA. This study examined the role of 3 different ncRNA types (circular RNA, long ncRNA, and microRNA) as biomarkers in RA diagnosis, as well as their regulatory roles in rheumatoid arthritis fibroblast-like synoviocytes functions such as inflammatory response, proliferation, cell cycle, apoptosis, and invasion. Additionally, the study explored the mechanisms by which Chinese medicine regulates these ncRNAs, with the goal of offering innovative strategies for RA treatment.
Arthritis, Rheumatoid/pathology*
;
Humans
;
RNA, Untranslated/metabolism*
;
Medicine, Chinese Traditional
;
Synoviocytes/metabolism*
;
RNA, Circular
;
Biomarkers/metabolism*
;
Apoptosis/genetics*
2.LINC00837/miR-671-5p/SERPINE2 functional axis promotes pathological processes of fibroblast-like synovial cells in rheumatoid arthritis.
Zhoufang CAO ; Yuan WANG ; Mengna WANG ; Yue SUN ; Feifei LIU
Journal of Southern Medical University 2025;45(2):371-378
OBJECTIVES:
To investigate the regulatory effect of LINC00837/miR-671-5p/SERPINE2 functional axis on pathological processes of fibroblast-like synovial cells (FLS) in rheumatoid arthritis (RA).
METHODS:
RA-FLS were transfected with a LINC00837 overexpression plasmid (pcDNA3.1-LINC00837), a LINC00837 interference plasmid (siRNA-LINC00837), or their respective negative control plasmids (pcDNA3.1-NC and siRNA-NC). Dual luciferase was used to verify the targeting relationship between LINC00837 and miR-671-5p and between miR-671-5p and SERPINE2. RT-qPCR was used to detect the expression levels of LINC00837, miR-671-5p and SERPINE2 in normal FLS or the transfected cells, whose proliferation and migration abilities were assessed using Edu assay and scratch healing assay and by detecting the expression levels of Ki-67, PCNA, E-cadherin and N-cadherin with Western blotting. The changes in cellular secretion of the inflammatory cytokines (TNF‑α, IL-17, IL-4 and IL-10) were examined using ELISA.
RESULTS:
Dual luciferase reporter gene assay showed that LINC00837 was capable of binding to the 3'-UTR of miR-671-5p, and the latter bound to the 3-UTR of SERPINE2 at specific binding sites between them. Compared with normal FLS, RA-FLS showed significantly increased expressions of LINC00837 and SERPINE2, lowered miR-671-5p expression and enhanced proliferation and migration abilities with increased expressions of pro-inflammatory cytokines and reduced expressions of anti-inflammatory cytokines. Transfection of RA-FLS with pcDNA-LINC00837 further enhanced cell proliferation and migration and the changes in the inflammatory cytokines, while transfection with si-LINC00837 produced the opposite changes.
CONCLUSIONS
RA-FLS have a LINC00837/miR-671-5p/SERPINE2 functional axis, which regulates cell proliferation, migration and secretion of inflammatory factors, and interventions targeting LINC00837 may provide a potential strategy to regulate the pathological processes in RA-FLS.
Arthritis, Rheumatoid/metabolism*
;
MicroRNAs/metabolism*
;
Humans
;
Cell Proliferation
;
Cell Movement
;
Synovial Membrane/pathology*
;
RNA, Long Noncoding/genetics*
;
Fibroblasts/metabolism*
;
Synoviocytes/metabolism*
;
Cells, Cultured
;
Transfection
3.Role of ceRNA network in inflammatory cells of rheumatoid arthritis.
Xiaoyu HE ; Haohua HE ; Yan ZHANG ; Tianyu WU ; Yongjie CHEN ; Chengzhi TANG ; Tian XIA ; Xiaonan ZHANG ; Changhao XIE
Journal of Central South University(Medical Sciences) 2023;48(5):750-759
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease caused by inflammatory cells. Various inflammatory cells involved in RA include fibroblast-like synoviocytes, macrophages, CD4+T-lymphocytes, B lymphocytes, osteoclasts and chondrocytes. The close interaction between various inflammatory cells leads to imbalance of immune response and disorder of the expression of mRNA in inflammatory cells. It helps to drive production of pro-inflammatory cytokines and stimulate specific antigen-specific T- and B-lymphocytes to produce autoantibodies which is an important pathogenic factor for RA. Competing endogenous RNA (ceRNA) can regulate the expression of mRNA by competitively binding to miRNA. The related ceRNA network is a new regulatory mechanism for RNA interaction. It has been found to be involved in the regulation of abnormal biological processes such as proliferation, apoptosis, invasion and release of inflammatory factors of RA inflammatory cells. Understanding the ceRNA network in 6 kinds of RA common inflammatory cells provides a new idea for further elucidating the pathogenesis of RA, and provides a theoretical basis for the discovery of new biomarkers and effective therapeutic targets.
Humans
;
Arthritis, Rheumatoid/genetics*
;
MicroRNAs/metabolism*
;
Synoviocytes/pathology*
;
Cytokines/metabolism*
;
RNA, Messenger/metabolism*
;
Fibroblasts/pathology*
;
Cell Proliferation
4.Crosstalk between FLS and chondrocytes is regulated by HIF-2alpha-mediated cytokines in arthritis.
Yun Hyun HUH ; Gyuseok LEE ; Won Hyun SONG ; Jeong Tae KOH ; Je Hwang RYU
Experimental & Molecular Medicine 2015;47(12):e197-
Rheumatoid arthritis (RA) and osteoarthritis (OA), two common types of arthritis, affect the joints mainly by targeting the synovium and cartilage. Increasing evidence indicates that a significant network connects synovitis and cartilage destruction during the progression of arthritis. We recently demonstrated that hypoxia-inducible factor (HIF)-2alpha causes RA and OA by regulating the expression of catabolic factors in fibroblast-like synoviocytes (FLS) or chondrocytes. To address the reciprocal influences of HIF-2alpha on FLS and chondrocytes, we applied an in vitro co-culture system using a transwell apparatus. When co-cultured with HIF-2alpha-overexpressing chondrocytes, FLS exhibited increased expression of matrix metalloproteinases and inflammatory mediators, similar to the effects induced by tumor-necrosis factor (TNF)-alpha treatment of FLS. Moreover, chondrocytes co-cultured with HIF-2alpha-overexpressing FLS exhibited upregulation of Mmp3 and Mmp13, which is similar to the effects induced by interleukin (IL)-6 treatment of chondrocytes. We confirmed these differential HIF-2alpha-induced effects via distinct secretory mediators using Il6-knockout cells and a TNF-alpha-blocking antibody. The FLS-co-culture-induced gene expression changes in chondrocytes were significantly abrogated by IL-6 deficiency, whereas TNF-alpha neutralization blocked the alterations in gene expression associated with co-culture of FLS with chondrocytes. Our results further suggested that the observed changes might reflect the HIF-2alpha-induced upregulation of specific receptors for TNF-alpha (in FLS) and IL-6 (in chondrocytes). This study broadens our understanding of the possible regulatory mechanisms underlying the crosstalk between the synovium and cartilage in the presence of HIF-2alpha, and may suggest potential new anti-arthritis therapies.
Animals
;
Arthritis/genetics/*immunology/pathology
;
Arthritis, Rheumatoid/genetics/immunology/pathology
;
Basic Helix-Loop-Helix Transcription Factors/genetics/*immunology
;
Cells, Cultured
;
Chondrocytes/immunology/metabolism/*pathology
;
Coculture Techniques
;
Fibroblasts/immunology/metabolism/*pathology
;
Gene Expression Regulation
;
Interleukin-6/genetics/*immunology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Osteoarthritis/genetics/immunology/pathology
;
Synovial Membrane/immunology/metabolism/*pathology
;
Tumor Necrosis Factor-alpha/genetics/*immunology
;
Up-Regulation
5.Eupatilin Ameliorates Collagen Induced Arthritis.
Juryun KIM ; Youngkyun KIM ; Hyoju YI ; Hyerin JUNG ; Yeri Alice RIM ; Narae PARK ; Seung Min JUNG ; Sung Hwan PARK ; Ji Hyeon JU
Journal of Korean Medical Science 2015;30(3):233-239
Eupatilin is the main active component of DA-9601, an extract from Artemisia. Recently, eupatilin was reported to have anti-inflammatory properties. We investigated the anti-arthritic effect of eupatilin in a murine arthritis model and human rheumatoid synoviocytes. DA-9601 was injected into collagen-induced arthritis (CIA) mice. Arthritis score was regularly evaluated. Mouse monocytes were differentiated into osteoclasts when eupatilin was added simultaneously. Osteoclasts were stained with tartrate-resistant acid phosphatase and then manually counted. Rheumatoid synoviocytes were stimulated with TNF-alpha and then treated with eupatilin, and the levels of IL-6 and IL-1beta mRNA expression in synoviocytes were measured by RT-PCR. Intraperitoneal injection of DA-9601 reduced arthritis scores in CIA mice. TNF-alpha treatment of synoviocytes increased the expression of IL-6 and IL-1beta mRNAs, which was inhibited by eupatilin. Eupatilin decreased the number of osteoclasts in a concentration dependent manner. These findings, showing that eupatilin and DA-9601 inhibited the expression of inflammatory cytokines and the differentiation of osteoclasts, suggest that eupatilin and DA-9601 is a candidate anti-inflammatory agent.
Animals
;
Anti-Inflammatory Agents/pharmacology/*therapeutic use
;
Arthritis, Experimental/chemically induced/*drug therapy
;
Arthritis, Rheumatoid/drug therapy/pathology
;
Cell Differentiation/*drug effects
;
Cells, Cultured
;
Collagen Type II
;
Cytokines/biosynthesis
;
Disease Models, Animal
;
Drugs, Chinese Herbal/therapeutic use
;
Female
;
Flavonoids/pharmacology/*therapeutic use
;
Humans
;
Inflammation/drug therapy/immunology
;
Interleukin-1beta/genetics/metabolism
;
Interleukin-6/genetics/metabolism
;
Lymph Nodes/cytology
;
Mice
;
Mice, Inbred DBA
;
Monocytes/cytology
;
Osteoclasts/*cytology
;
Plant Extracts/pharmacology
;
RNA, Messenger/biosynthesis
;
Synovial Membrane/cytology
;
T-Lymphocytes, Regulatory/cytology/immunology
;
Tumor Necrosis Factor-alpha/pharmacology
6.Triptolide inhibites Th17 cell differentiation via regulating cyclooxygenase-2/ prostaglandin E2 axis in synovial fibroblasts from rheumatoid arthritis.
An-Ping PENG ; Xiao-Yun WANG ; Jun-Hua ZHUANG
China Journal of Chinese Materia Medica 2014;39(3):536-539
Triptolide (TPT), an active compound extracted from Chinese herb Tripterygium wilfordii , has been used in therapy of rheumatoid arthritis (RA). In this study, after synovial fibroblasts from rheumatoid arthritis (RASFs) were treated with TPT, we investigated its effect on the differentiation of Th17 cells. Firstly, the mRNA level of cyclooxygenase (COX) wad detected by qRT-PCR and the protein level of prostaglandin E2 (PGE2) was tested by ELISA in RASFs treated with different concentrations (0, 10, 50, 100 nmol L-1 ) of TPT. Then after TPT pre-treated RASFs and RA CD4 + T cells wer e co-cultured for 3 days in the presence or absence of PGE2, IL-17 and IFN-gamma production in CD4 T cell subsets were detected by flow cytometry. The results showed TPT decreased the mRNA experssion of COX2 and the secretion of PGE2 in RASFs in a dose-dependent manner(P <0. 05). We further found that differentiation of Thl7 cells was downregulated in a dose-dependent manner, and exogenous PGE2 could reverse the inhibition of Th17 cell differentiation(P <0. 05). Taken together, our results demonstrated that TPT inhibited the mRNA level of COX2 and the secretion of PGE2 in RASFs, which partly led to impaired Th17 cell differentiation in vitro.
Arthritis, Rheumatoid
;
drug therapy
;
enzymology
;
immunology
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Cyclooxygenase 2
;
genetics
;
metabolism
;
Dinoprostone
;
metabolism
;
Diterpenes
;
pharmacology
;
Epoxy Compounds
;
pharmacology
;
Fibroblasts
;
drug effects
;
immunology
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Humans
;
Middle Aged
;
Phenanthrenes
;
pharmacology
;
Synovial Fluid
;
drug effects
;
Th17 Cells
;
drug effects
;
pathology
7.Over-expression of extracellular superoxide dismutase in mouse synovial tissue attenuates the inflammatory arthritis.
Dong Hoon YU ; Jun Koo YI ; Hyung Soo YUH ; Seo jin PARK ; Hei Jung KIM ; Ki Beom BAE ; Young Rae JI ; Na Ri KIM ; Si Jun PARK ; Do Hyung KIM ; Sung Hyun KIM ; Myoung Ok KIM ; Jeong Woong LEE ; Zae Young RYOO
Experimental & Molecular Medicine 2012;44(9):529-535
Oxidative stress such as reactive oxygen species (ROS) within the inflamed joint have been indicated as being involved as inflammatory mediators in the induction of arthritis. Correlations between extracellular-superoxide dismutase (EC-SOD) and inflammatory arthritis have been shown in several animal models of RA. However, there is a question whether the over-expression of EC-SOD on arthritic joint also could suppress the progression of disease or not. In the present study, the effect on the synovial tissue of experimental arthritis was investigated using EC-SOD over-expressing transgenic mice. The over-expression of EC-SOD in joint tissue was confirmed by RT-PCR and immunohistochemistry. The degree of the inflammation in EC-SOD transgenic mice was suppressed in the collagen-induced arthritis model. In a cytokine assay, the production of pro-inflammatory cytokines such as, IL-1beta, TNFalpha, and matrix metalloproteinases (MMPs) was decreased in fibroblast-like synoviocyte (FLS) but not in peripheral blood. Histological examination also showed repressed cartilage destruction and bone in EC-SOD transgenic mice. In conclusion, these data suggest that the over-expression of EC-SOD in FLS contributes to the activation of FLS and protection from joint destruction by depressing the production of the pro-inflammatory cytokines and MMPs. These results provide EC-SOD transgenic mice with a useful animal model for inflammatory arthritis research.
Animals
;
Arthritis, Experimental/blood/*enzymology/metabolism
;
*Arthritis, Rheumatoid/enzymology/pathology
;
Fibroblasts/metabolism
;
Gene Expression Regulation
;
Inflammation/pathology
;
Interleukin-1beta/blood/metabolism
;
Joints/enzymology/pathology
;
Matrix Metalloproteinases/blood/metabolism
;
Mice
;
Mice, Transgenic
;
Reactive Oxygen Species/metabolism
;
*Superoxide Dismutase/genetics/metabolism
;
Synovial Fluid/*enzymology
;
Synovial Membrane/pathology
8.Regulation of B cell activating factor (BAFF) receptor expression by NF-kappaB signaling in rheumatoid arthritis B cells.
Yun Ju WOO ; Bo Young YOON ; Joo Yeon JHUN ; Hye Jwa OH ; Sewon MIN ; Mi La CHO ; Sung Hwan PARK ; Ho Youn KIM ; Jun Ki MIN
Experimental & Molecular Medicine 2011;43(6):350-357
B cells play an important role in the pathogenesis of rheumatoid arthritis (RA). High levels of B cell activating factor (BAFF) are detected in autoimmune diseases. BAFF and BAFF receptor (BAFF-R) are expressed in B and T cells of RA synovium. The study was undertaken to identify the NF-kappaB signal pathway involved in the induction of BAFF-R in human B cells. Immunohistochemical staining of NF-kappaB p65, NF-kappaB p50, BAFF, and BAFF-R was performed on sections of synovium from severe and mild RA and osteoarthritis (OA) patients. Peripheral blood mononuclear cells (PBMCs) were isolated from control and RA patients and B cells were isolated from controls. BAFF-R was analyzed by flow cytometry, realtime PCR and confocal staining after treatment with NF-kappaB inhibitors. NF-kappaB p65, NF-kappaB p50, BAFF, and BAFF-R were highly expressed in severe RA synovium relative to mild RA synovium or OA synovium. BAFF-R expression was reduced by NF-kappaB inhibitors in PBMCs and B cells from normal controls. We also showed reduction in expression of BAFF-R via inhibition of the NF-kappaB pathway in PBMCs of RA patients. BAFF/BAFF-R signaling is an important mechanism of pathogenesis in RA and that BAFF-R reduction by NF-kappaB blocking therapy is another choice for controlling B cells in autoimmune diseases such as RA.
Arthritis, Rheumatoid/genetics/*metabolism/pathology/physiopathology
;
B-Cell Activating Factor/genetics/metabolism
;
B-Cell Activation Factor Receptor/genetics/*metabolism
;
B-Lymphocytes/*drug effects/immunology/metabolism/pathology
;
Cell Separation
;
Cells, Cultured
;
Disease Progression
;
Enzyme Inhibitors/pharmacology
;
Flow Cytometry
;
Gene Expression Regulation/immunology
;
Humans
;
Immunohistochemistry
;
NF-kappa B/*metabolism
;
Signal Transduction/immunology
;
Synovial Membrane/*pathology
;
T-Lymphocytes/drug effects/immunology/metabolism/pathology
;
Transcriptional Activation/drug effects
9.Slug suppression induces apoptosis via Puma transactivation in rheumatoid arthritis fibroblast-like synoviocytes treated with hydrogen peroxide.
Hoon Suk CHA ; Eun Kyung BAE ; Joong Kyong AHN ; Jaejoon LEE ; Kwang Sung AHN ; Eun Mi KOH
Experimental & Molecular Medicine 2010;42(6):428-436
Inadequate apoptosis contributes to synovial hyperplasia in rheumatoid arthritis (RA). Recent study shows that low expression of Puma might be partially responsible for the decreased apoptosis of fibroblast-like synoviocytes (FLS). Slug, a highly conserved zinc finger transcriptional repressor, is known to antagonize apoptosis of hematopoietic progenitor cells by repressing Puma transactivation. In this study, we examined the expression and function of Slug in RA FLS. Slug mRNA expression was measured in the synovial tissue (ST) and FLS obtained from RA and osteoarthritis patients. Slug and Puma mRNA expression in FLS by apoptotic stimuli were measured by real-time PCR analysis. FLS were transfected with control siRNA or Slug siRNA. Apoptosis was quantified by trypan blue exclusion, DNA fragmentation and caspase-3 assay. RA ST expressed higher level of Slug mRNA compared with osteoarthritis ST. Slug was significantly induced by hydrogen peroxide (H2O2) but not by exogenous p53 in RA FLS. Puma induction by H2O2 stimulation was significantly higher in Slug siRNA-transfected FLS compared with control siRNA-transfected FLS. After H2O2 stimulation, viable cell number was significantly lower in Slug siRNA-transfected FLS compared with control siRNA-transfected FLS. Apoptosis enhancing effect of Slug siRNA was further confirmed by ELISA that detects cytoplasmic histone-associated DNA fragments and caspase-3 assay. These data demonstrate that Slug is overexpressed in RA ST and that suppression of Slug gene facilitates apoptosis of FLS by increasing Puma transactivation. Slug may therefore represent a potential therapeutic target in RA.
Apoptosis/*drug effects/genetics
;
Apoptosis Regulatory Proteins/*genetics/metabolism
;
Arthritis, Rheumatoid/genetics/metabolism/*pathology
;
Cells, Cultured
;
Drug Evaluation, Preclinical
;
Fibroblasts/drug effects/metabolism/pathology
;
Humans
;
Hydrogen Peroxide/*pharmacology
;
Proto-Oncogene Proteins/*genetics/metabolism
;
RNA, Small Interfering/*pharmacology
;
Synovial Membrane/cytology/drug effects/metabolism/*pathology
;
Transcription Factors/*antagonists & inhibitors/genetics
;
Transcriptional Activation/drug effects
;
Transfection
10.Methanol extract of Celastrus orbiculatu suppresses synovial hyperplasia and cartilage erosion and degradation in rheumatoid arthritis.
Chang-hong XIAO ; Wei-wang GU ; Jia-ning ZHANG ; Guo-qiang CHEN ; Shi-feng HUANG ; Min YANG ; De-chao CHEN ; Jie CHEN ; Dan XIAO
Journal of Southern Medical University 2007;27(7):945-950
OBJECTIVETo investigate the effects of methanol extract of Celastrus orbiculatu (MECO) on synovial hyperplasia and cartilage erosion and degradation in rheumatoid arthritis (RA), and explore the possible mechanisms to provide clues for new drug development for RA treatment.
METHODSThe articular synovium from patients with RA and normal articular cartilage were co-implanted into the back of severe combined immunodeficient (SCID)mice to establish the chimeric model SCID- HuRAg. Four weeks later, the mice were given MECO intragastrically at 30 mg/day, leflunomide at 500 microg/day or distilled water, respectively, for 4 consecutive weeks. After completion of the treatments, the histological scores of the grafts for synovial hyperplasia, cartilage invasion by synoviocyte and cartilage degradation around the chondrocytes were evaluated, and serum level of tumor necrosis factor-alpha (TNF-alpha) was measured with radioimmunoassay. The expression of TNF-alpha mRNA and the cell apoptosis in the synovium were detected with in situ hybridization (ISH) and TUNEL, respectively, and the results were analyzed with the image analysis system.
RESULTSThe grafts survived in the mice till the end of experiment. MECO and leflunomide, in comparison with distilled water, significantly lowered the scores for synovial hyperlasia (2.00+/-0.76 and 2.25+/-0.89 vs 3.63+/-0.52), cartilage erosion (1.69+/-0.80 and 2.00+/-1.36 vs 3.75+/-0.53), cartilage degradation (1.88+/-0.83 and 2.13+/-0.83 vs 3.63+/-0.74) and serum TNF-alpha level (0.84+/-0.09 and 0.83+/-0.12 vs 0.99+/-0.11 ng/ml). Cell apoptosis of the synovium increased significantly with MECO and leflunomide treatments, but the expression of TNF-alpha mRNA in the synovium decreased significantly in MECO group.
CONCLUSIONMECO can effectively suppress synovial hyperplasia and cartilage erosion and degradation SCID-HuRAg mice by reducing TNF-alpha production in the synovium and promoting synovial apoptosis. MECO can be comparable with leflunomide in their effect, but the former is more effective in suppressing TNF-alpha expression in the synovium.
Animals ; Apoptosis ; drug effects ; Arthritis, Rheumatoid ; complications ; drug therapy ; metabolism ; pathology ; Cartilage Diseases ; complications ; drug therapy ; metabolism ; pathology ; Celastrus ; chemistry ; Cell Transplantation ; Female ; Gene Expression Regulation ; drug effects ; Humans ; Hyperplasia ; complications ; drug therapy ; Male ; Methanol ; chemistry ; Mice ; Plant Extracts ; isolation & purification ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism ; Synovial Membrane ; drug effects ; pathology ; transplantation ; Tumor Necrosis Factor-alpha ; blood ; genetics

Result Analysis
Print
Save
E-mail