1.Lingguizhugan Decoction improves chronic heart failure by synergistically modulating ?1-AR/Gs/GRKs/?-arrestin signaling bias.
Shuting GUO ; Lei XIA ; Songru YANG ; Yueyang LIANG ; Xiaoli SHAN ; Pei ZHAO ; Wei GUO ; Chen ZHANG ; Ming XU ; Ning SUN ; Rong LU ; Huihua CHEN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):560-571
Lingguizhugan Decoction (LGZG) demonstrates significant efficacy in treating various cardiovascular diseases clinically, yet its precise mechanism of action remains elusive. This study aimed to elucidate the potential mechanisms and effects of LGZG on isoproterenol (ISO) continuous stimulation-induced chronic heart failure (CHF) in mice, providing direct experimental evidence for further clinical applications. In vivo, continuous ISO infusion was administered to mice, and ventricular myocytes were utilized to explore LGZG?s potential mechanism of action on the ?1-adrenergic receptor (?1-AR)/Gs/G protein-coupled receptor kinases (GRKs)/?-arrestin signaling deflection system in the heart. The findings reveal that LGZG significantly reduced the messenger ribonucleic acid (mRNA) expression of hypertrophy-related biomarkers [atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP)] and improved cardiac remodeling and left ventricular diastolic function in mice with ISO-induced CHF. Furthermore, LGZG inhibited the overactivation of Gs/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling and downregulated the downstream transcriptional activity of cAMP-response element binding protein (CREB) and the expression of the coactivator CBP/P300. Notably, LGZG downregulated the expression of ?-arrestin1 and GRK 2/3/5 while upregulating the expression of ?1-AR and ?-arrestin2. These results suggest that LGZG inhibits Gs/cAMP/PKA signaling and ?-arrestin/GRK-mediated desensitization and internalization of ?1-AR, potentially exerting cardioprotective effects through the synergistic regulation of the ?1-AR/Gs/GRKs/?-arrestin signaling deflection system via multiple pathways.
Animals
;
Heart Failure/genetics*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice
;
Male
;
G-Protein-Coupled Receptor Kinases/genetics*
;
Mice, Inbred C57BL
;
Humans
;
Isoproterenol
;
Arrestins/genetics*
;
Chronic Disease
2.Effects of Chinese Fructus Mume formula and its separated prescription extract on insulin resistance in type 2 diabetic rats.
Jing-bin LI ; Li-jun XU ; Hui DONG ; Zhao-yi HUANG ; Yan ZHAO ; Guang CHEN ; Fu-er LU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(6):877-885
The effect of Fructus Mume formula and its separated prescription extract on insulin resistance in type 2 diabetic rats was investigated. The rat model of type 2 diabetes was established by feeding on a high-fat diet for 8 weeks and by subsequently intravenous injection of small doses of streptozotocin. Rats in treatment groups, including the Fructus Mume formula treatment group (FM), the cold property herbs of Fructus Mume formula treatment group (CFM), the warm property herbs of Fructus Mume formula treatment group (WFM), were administrated with Fructus Mume formula and its separated prescription extract by gavage, while the rats in diabetic model group (DM) and metformin group (MET) were given by gavage with normal saline and metformin correspondingly. The body weight before and after treatment was measured, and the oral glucose tolerance test (OGTT) and the insulin release test (IRT) were performed. The homeostasis model assessment-insulin resistance index (HOMA-IR) was calculated. The protein and mRNA expression levels of Insr, β-arrestin-2, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues were detected by using Western blotting and RT-PCR respectively. The results demonstrated that, as compared with DM group, OGTT, IRT (0 h, 1 h) levels and HOMR-IR in treatment groups were all reduced, meanwhile their protein and mRNA expression levels of Insr, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues were obviously increased, and their protein and mRNA expression levels of β-arrestin-2 in the liver and skeletal muscle tissues were also markedly increased. It was suggested that the Fructus Mume formula and its separated prescription extracts could effectively improve insulin resistance in type 2 diabetic rats, which might be related to the up-regulated expression of Insr, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues, and β-arrestin-2 in the liver and skeletal muscle tissues.
Adipose Tissue
;
drug effects
;
metabolism
;
Animals
;
Arrestins
;
genetics
;
metabolism
;
Diabetes Mellitus, Experimental
;
drug therapy
;
metabolism
;
Drugs, Chinese Herbal
;
pharmacology
;
therapeutic use
;
Glucose Intolerance
;
drug therapy
;
Glucose Transporter Type 4
;
genetics
;
metabolism
;
Hypoglycemic Agents
;
pharmacology
;
therapeutic use
;
Insulin Receptor Substrate Proteins
;
genetics
;
metabolism
;
Insulin Resistance
;
Liver
;
drug effects
;
metabolism
;
Male
;
Muscle, Skeletal
;
drug effects
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Wistar
;
Receptor, Insulin
;
genetics
;
metabolism
;
beta-Arrestin 2
;
beta-Arrestins

Result Analysis
Print
Save
E-mail