1.n-butanol fraction of ethanol extract of Periploca forrestii Schltr.: its active components, targets and pathways for treating Alcheimer's disease in rats.
Niandong RAN ; Jie LIU ; Jian XU ; Yongping ZHANG ; Jiangtao GUO
Journal of Southern Medical University 2025;45(4):785-798
OBJECTIVES:
To investigate the active components and possible mechanisms of n-butanol fraction of Periploca forrestii Schltr. ethanol extract for treating Alzheimer's disease (AD).
METHODS:
The active components of n-butanol fraction of Periploca forrestii Schltr. ethanol extract were analyzed using UPLC-QE-MS technique. In a SD rat model of AD induced by treatment with AlCl3 and D-gal, the therapeutic effects of low, moderate and high doses of the n-butanol fraction, saline, and donepezil hydrochloride were evaluated using ELISA, HE and Nissl staining, immunohistochemistry and Western blotting. The therapeutic mechanisms of the n-butanol fraction were explored using network pharmacology and molecular docking.
RESULTS:
Seventeen active components were identified from the n-butanol fraction of Periploca forrestii Schltr. ethanol extract, including phenylpropanoids, flavonoids, anthraquinones, triterpenoids, steroids, and volatile oils. In the rat models of AD, treatment with the n-butanol fraction significantly lowed AChE content in the hippocampus, increased the contents of ACh, SOD, CAT, and GSH-Px, enhanced the expressions of neuronal apoptotic factors Bcl-2, PI3K, Akt, p-PI3K, and p-Akt, and reduced the expressions of Bax and caspase-3 proteins. The treatment also dose-dependently up-regulated hippocampal expressions of Nrf-2, HO-1 and BDNF and down-regulated Keap-1, Aβ and Tau expressions. Bioinformatics analysis identified 14 key intersected targets (including TNF, AKT1 and ESR1) between the n-butanol fraction and AD.
CONCLUSIONS
The therapeutic effect of n-butanol fraction of Periploca forrestii Schltr. ethanol extract in AD mice is mediated by its multiple active components that regulate multiple targets and pathways.
Animals
;
Rats, Sprague-Dawley
;
Rats
;
1-Butanol/chemistry*
;
Plant Extracts/pharmacology*
;
Periploca/chemistry*
;
Ethanol/chemistry*
;
Alzheimer Disease/drug therapy*
;
Male
;
Molecular Docking Simulation
;
Apoptosis/drug effects*
2.Cynanchum atratum Bunge and Cynanchum versicolor Bunge for Baiwei: An updated review of their botany, phytochemistry, traditional uses and pharmacological activities.
Wei XIE ; Xin-Yang LIU ; Xia LI ; Yong-Sheng JIN
Journal of Integrative Medicine 2025;23(3):230-255
Cynanchum atratum Bunge (C. atratum) and Cynanchum versicolor Bunge (C. versicolor) are two related species that have been used as "Baiwei" (Cynanchi Atrati Radix Et Rhizoma) in traditional medicine in China and other Asian countries for a long time. However, to date, no comprehensive review of C. atratum and C. versicolor has been published. This review provides a comprehensive summary on the botany, phytochemistry, traditional uses and pharmacology of Baiwei; The authors focus especially on the revision of errors in previous articles and reviews, updating information and providing a comparison of C. atratum and C. versicolor. Furthermore, current research reveals significant disparities in the chemical composition and pharmacological effects between C. atratum and C. versicolor. Up to November 2023, 178 compounds have been isolated from C. atratum and C. versicolor, including C21 steroids, acetophenones, alkaloids and volatile oils. These compounds and extracts have been proven to exhibit significant pharmacological activities, including anti-inflammatory, anti-tumor, anti-virus, anti-fungal, memory-enhancing and anti-pyretic action, immune modulatory effects, reducing blood lipid, inhibition of melanin production, and anti-parasitic effects. Therefore, this review presents new insights into these two herbs used as "Baiwei" and further study is warranted to enhance their clinical application. Please cite this article as: Xie W, Liu XY, Li X, Jin YS. Cynanchum atratum Bunge and Cynanchum versicolor Bunge for Baiwei: An updated review of their botany, phytochemistry, traditional uses and pharmacological activities. J Integr Med. 2025; 23(3): 230-255.
Cynanchum/chemistry*
;
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Phytochemicals/pharmacology*
;
Animals
;
Medicine, Chinese Traditional
;
Plant Extracts/chemistry*
3.Mechanism of active ingredients in Periploca forrestii compound against rheumatoid arthritis based on integrative metabolomics and network pharmacology.
Qin ZHANG ; Hong ZHANG ; Chun-Mei YANG ; Bo WANG ; Chen-Yang LI ; Qi LI
China Journal of Chinese Materia Medica 2023;48(2):507-516
In this study, an ultra-performance liquid chromatography-quadrupole time-of-flight high resolution mass spectrometer(UPLC-Q-TOF-HRMS) was used to investigate the effects of the active ingredients in Periploca forrestii compound on spleen metabolism in rats with collagen-induced arthritis(CIA), and its potential anti-inflammatory mechanism was analyzed by network pharmacology. After the model of CIA was successfully established, the spleen tissues of rats were taken 28 days after administration. UPLC-Q-TOF-HRMS chromatograms were collected and analyzed by principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and MetPA. The results showed that as compared with the blank control group, 22 biomarkers in the spleen tissues such as inosine, citicoline, hypoxanthine, and taurine in the model group increased, while 9 biomarkers such as CDP-ethanolamine and phosphorylcholine decreased. As compared with the model group, 21 biomarkers such as inosine, citicoline, CDP-ethanolamine, and phosphorylcholine were reregulated by the active ingredients in P. forrestii. Seventeen metabolic pathways were significantly enriched, including purine metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism. Network pharmacology analysis found that purine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism played important roles in the pathological process of rheumatoid arthritis. This study suggests that active ingredients in P. forrestii compound can delay the occurrence and development of inflammatory reaction by improving the spleen metabolic disorder of rats with CIA. The P. forrestii compound has multi-target and multi-pathway anti-inflammatory mechanism. This study is expected to provide a new explanation for the mechanism of active ingredients in P. forrestii compound against rheumatoid arthritis.
Rats
;
Animals
;
Periploca
;
Cysteine
;
Cytidine Diphosphate Choline
;
Network Pharmacology
;
Phosphorylcholine
;
Metabolomics
;
Arthritis, Rheumatoid/drug therapy*
;
Biomarkers
;
Glycerophospholipids
;
Methionine
;
Purines
;
Chromatography, High Pressure Liquid
4.Cloning and characterization of the promoters of the key genes CPT, SRPP and REF involved in Periploca sepium rubber biosynthesis.
Shuai CUI ; Ren CHEN ; Leqing QU
Chinese Journal of Biotechnology 2023;39(7):2794-2805
Hevea brasiliensis is the main source of natural rubber. Restricted by its tropical climate conditions, the planting area in China is limited, resulted in a low self-sufficiency. Periploca sepium which can produce natural rubber is a potential substitute plant. cis-prenyltransferase (CPT), small rubber particle protein (SRPP) and rubber elongation factor (REF) are key enzymes involved in the biosynthesis of cis-1, 4-polyisoprene, the main component of natural rubber. In this study, we cloned the promoter sequences of CPT, SRPP and REF through chromosome walking strategy. The spatial expression patterns of the three promoters were analyzed using GUS (β-glucuronidase) as a reporter gene driven by the promoters through Agrobacterium-mediated genetic transformation. The results showed that GUS driven by CPT, SRPP or REF promoter was expressed in leaves and stems, especially in the leaf vein and vascular bundle. The GUS activity in stems was higher than that in leaf. This study provided a basis for analyzing the biosynthesis mechanism of natural rubber and breeding new varieties of high yield natural rubber.
Peptide Elongation Factors/genetics*
;
Plant Proteins/metabolism*
;
Periploca/metabolism*
;
Rubber
;
Plant Breeding
;
Cloning, Molecular
5.Two cardenolide glycosides from the seed fairs of Asclepias curassavica and their cytotoxic activities.
Ai-Jia JI ; Qing MA ; Mu-Yan KONG ; Le-Yan LI ; Xin-Lian CHEN ; Zhong-Qiu LIU ; Jin-Jun WU ; Rong-Rong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(3):202-209
Two cardenolide glycosides, corotoxigenin 3-O-[β-D-glucopyranosyl-(1→4)-6-deoxy-β-D-glucopyranoside] (1) and coroglaucigenin 3-O-[β-D-glucopyranosyl-(1→4)-6-deoxy-β-D-glucopyranoside] (2), were isolated from the seed fairs of Asclepias curassavica. The structures of 1-2 were determined based on the combination of the analysis of their MS, NMR spectroscopic data and acid hydrolysis. The inhibitory effects of compounds 1 and 2 on human colorectal carcinoma cells (HCT116), non-small cell lung carcinoma cells (A549) and hepatic cancer cells (SMMC-7721) were evaluated. The results showed that both compounds 1 and 2 significantly inhibited the viability, proliferation, and migration of A549, HCT116 and SMMC-7721 cells, suggesting that compounds 1 and 2 can be applied in the treatment of lung, colon and liver cancers in clinical practice. This study may not only provide a scientific basis for clarifying the active ingredients in A. curassavica, but also help to understand its antitumor activity, which can promote the application of A. curassavica in clinical treatment of various cancers.
Antineoplastic Agents/pharmacology*
;
Asclepias/chemistry*
;
Cardenolides/pharmacology*
;
Glycosides/pharmacology*
;
Humans
;
Seeds
6.Effect of C21 steroidal glycoside of Cynanchum auriculatum on liver and kidney fibrosis through TLR4 pathway.
Zi-Rui ZHUANG ; Ming-Liang WANG ; Yun-Ru PENG ; Ming-Qin SHEN
China Journal of Chinese Materia Medica 2021;46(11):2857-2864
The liver and kidney fibrosis model was established by thioacetamide(TAA) and unilateral ureteral obstruction(UUO) in SD rats. The rats were randomly divided into three groups: model group, low and high-dose groups of C21 steroidal glycosides of Cynanchum auriculatum. Another blank control group was set. Four weeks later, serum was taken to detect the biochemical indexes of liver and kidney function. Urine protein and urine creatinine were detected by kits. Liver and kidney tissue samples were stained with HE and Masson staining, and hydroxyproline content was detected. Western blot was used to detect expressions of fibrotic proteins, inflammatory factors and TLR4 signaling pathways, so as to observe the preventive and therapeutic effects of C21 steroidal glycosides from C. auriculatum on hepatic and renal fibrosis and explore its molecular mechanism. Four weeks later, serum biochemical results showed that liver and kidney functions were seriously damaged, and pathological sections showed that inflammatory cell infiltration, decrease of parenchymal cells, and increase of interstitial fibrosis in liver and kidney tissues. The results showed that low and high doses(150, 300 mg·kg~(-1)) of C21 steroidal glycosides could significantly reduce the collagen deposition and the pathological changes of liver and kidney fibrosis compared with the model group. At the same time, we found that the expression levels of TLR4 and MyD88 signaling pathway proteins were significantly increased in the liver and kidney tissues of the model group, and a large number of NF-κB signaling pathway proteins migrated into the nucleus. On the contrary, the expression levels of TLR4, MyD88 signaling pathway proteins and the nuclear migration of NF-κB were significantly inhibited in the low and high dose groups of C21 steroidal glycosides from C. auriculatum. Therefore, it was speculated that the mechanism of C21 steroidal glycoside for preventive and therapeutic effect on hepatic and renal fibrosis was related to inhibit TLR4/MYD88/NF-κB inflammatory pathway, thus preventing hepatic and renal fibrosis.
Animals
;
Cynanchum
;
Fibrosis
;
Glycosides
;
Kidney/pathology*
;
Liver
;
NF-kappa B/genetics*
;
Rats
;
Rats, Sprague-Dawley
;
Toll-Like Receptor 4/genetics*
7.Identification,biological characteristics and fungicide screening of pathogen of southern blight in Cynanchum stauntonii.
Jin-Xin LI ; Qiao-Huan CHEN ; Yu-Huan MIAO ; Tie-Lin WANG ; Da-Hui LIU
China Journal of Chinese Materia Medica 2021;46(13):3303-3310
During the high-temperature and rainy season from June to October in 2017-2019,serious southern blight broke out in the Cynanchum stauntonii planting area in Tuanfeng county,Hubei province,which had a great impact on the yield and quality of medicinal materials. In this study,the pathogen of C. stauntonii was isolated,purified,and identified,and the pathogenicity was tested according to Koch's postulates. Meanwhile,the biological characteristics of the pathogen were analyzed. On this basis,the effective fungicides were screened in laboratory. Finally,the pathogen( BQ-1) was identified as Athelia rolfsii( Deuteromycotina,Basidiomycota,anamorph: Sclerotium rolfsii). The optimum growth conditions for BQ-1 were 25-30 ℃,p H 5-8,and alternating light and dark.The effective chemical fungicides were lime-sulphur-synthelic-solution( LSSS) and flusilazole,and the effective botanical fungicide was osthole. BQ-1 was highly homologous to the pathogen HS-1 of peanut southern blight,with the similarity of 18 S r DNA and TEF sequences at 99. 09%. The southern blight in C. stauntonii might be resulted from that in peanut. In the production of C. stauntonii,the following measures should be taken: avoiding rotation or neighboring with peanut,draining water from June to October to reduce humidity,and reasonably applying fungicides.
Basidiomycota
;
Cynanchum
;
Fungicides, Industrial/pharmacology*
;
Humidity
8.Comprehensive analysis of components in Chinese medicines derived from Apocynum venetum and Poacynum pictum in Xinjiang based on HPLC fingerprint and chemometrics.
Matur-Zi AIBIBAIHAN ; Juan ZHANG ; Jun ZHU ; Guo-Ping WANG ; Xiao-Jin LI ; Yuan-Jin QIU ; Wei HE ; Li WANG
China Journal of Chinese Materia Medica 2021;46(15):3886-3892
This study established high-performance liquid chromatography(HPLC) fingerprints of Chinese medicines derived from Apocynum venetum and Poacynum pictum in Xinjiang and explored their composition differences with the combination of content determination, similarity analysis, cluster analysis and principal component analysis. The HPLC conditions included Phenomenex Kinetex C_(18) column(4.6 mm ×100 mm, 2.6 μm), acetonitrile-0.01% trifluoroacetic acid aqueous solution as mobile phase, gradient elution, flow rate of 0.6 mL·min~(-1), detection wavelength of 281 nm and column temperature of 25 ℃. The content of chlorogenic acid, quercetin-3-O-sophoroside, rutin, hyperin, isoquercitrin, trifolin and astragalin was determined in 31 batches of medicinal materials, and fingerprint research and chemometric analysis were performed with Similarity Evaluation System for Chromatographic Fingerprint of Traditional Chinese Medicine(Version 2004 A) and SPSS 21.0. In the Chinese Pharmacopoeia 2020, the quality of Apocyni Veneti Folium is controlled by character identification, microscopic identification, thin layer chromatography identification and quantitative determination of hyperin. There were 21 common peaks of A. venetum and P. pictum in the HPLC fingerprints, 5 of which were identified as chlorogenic acid, hyperin, isoquercitrin, trifolin and astragalin, with their content also determined. Except for 3 batches of medicinal materials, the similarity of other 28 batches was higher than 0.83, indicating good similarity. Two categories were formed in the cluster analysis based on content determination, which showed that some differences existed in similarities between different regions of Xinjiang. The medicinal materials were ranked by quality with principal component analysis, and the results indicated that the top 15 all came from northern Xinjiang. The quality difference of A. venetum and P. pictum had a correlation with the place of origin. This study provides a reference for the analysis and evaluation of A. venetum and P. pictum from different habitats and the selection of introduction and cultivation areas.
Apocynum
;
China
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
Medicine, Chinese Traditional
9.Phytochemicals of Periploca aphylla Dcne. ameliorated streptozotocin-induced diabetes in rat.
Umbreen RASHID ; Muhammad Rashid KHAN
Environmental Health and Preventive Medicine 2021;26(1):38-38
BACKGROUND:
Periploca aphylla is used by local population and indigenous medicine practitioners as stomachic, tonic, antitumor, antiulcer, and for treatment of inflammatory disorders. The aim of this study was to evaluate antidiabetic effect of the extract of P. aphylla and to investigate antioxidant and hypolipidemic activity in streptozotocin (STZ)-induced diabetic rats.
METHODS:
The present research was conducted to evaluate the antihyperglycemic potential of methanol extract of P. aphylla (PAM) and subfractions n-hexane (PAH), chloroform (PAC), ethyl acetate (PAE), n-butanol (PAB), and aqueous (PAA) in glucose-overloaded hyperglycemic Sprague-Dawley rats. Based on the efficacy, PAB (200 mg/kg and 400 mg/kg) was tested for its antidiabetic activity in STZ-induced diabetic rats. Diabetes was induced via intraperitoneal injection of STZ (55 mg/kg) in rat. Blood glucose values were taken weekly. HPLC-DAD analysis of PAB was carried out for the presence of various polyphenols.
RESULTS:
HPLC-DAD analysis of PAB recorded the presence of rutin, catechin, caffeic acid, and myricetin. Oral administration of PAB at doses of 200 and 400 mg/kg for 21 days significantly restored (P < 0.01) body weight (%) and relative liver and relative kidney weight of diabetic rats. Diabetic control rats showed significant elevation (P < 0.01) of AST, ALT, ALP, LDH, total cholesterol, triglycerides, LDL, creatinine, total bilirubin, and BUN while reduced (P < 0.01) level of glucose, total protein, albumin, insulin, and HDL in serum. Count of blood cells and hematological parameters were altered in diabetic rats. Further, glutathione peroxidase, catalase, superoxide dismutase, glutathione reductase, and total soluble protein concentration decreased while concentration of thiobarbituric acid reactive substances and percent DNA damages increased (P < 0.01) in liver and renal tissues of diabetic rats. Histopathological damage scores increased in liver and kidney tissues of diabetic rats. Intake of PAB (400 mg/kg) resulted in significant improvement (P < 0.01) of above parameters, and results were comparable to that of standard drug glibenclamide.
CONCLUSION
The result suggests the antihyperglycemic, antioxidant, and anti-inflammatory activities of PAB treatment in STZ-compelled diabetic rat. PAB might be used as new therapeutic agent in diabetic patients to manage diabetes and decrease the complications.
1-Butanol/chemistry*
;
Administration, Oral
;
Animals
;
Diabetes Mellitus, Experimental/drug therapy*
;
Dose-Response Relationship, Drug
;
Hypoglycemic Agents/chemistry*
;
Male
;
Periploca/chemistry*
;
Phytochemicals/chemistry*
;
Plant Extracts/chemistry*
;
Rats
;
Rats, Sprague-Dawley
;
Streptozocin/adverse effects*
10.Investigation on secondary metabolites of endophytic fungus Talaromyces purpurogenus hosted in Tylophora ovate.
Jing-Yi ZHAO ; Zhen LIU ; Sen-Feng SUN ; Yun-Bao LIU
China Journal of Chinese Materia Medica 2020;45(6):1368-1373
Eight compounds,(R)-2-[5-(methoxycarbonyl)-4-methyl-6-oxo-3,6-dihydro-2H-pyran-2-yl]acetic acid(1),(3S,4R)-3,4-dihydro-3,4-epoxy-5-hydroxynaphthalen-1(2H)-one(2),(-)-mitorubrinol(3),(-)-mitorubrin(4),(±)-asperlone A(5), terreusinone(6), verrucisidinol(7) and cerebroside C(8) were isolated from the endophytic fungus Talaromyces purpurogenus by using various column chromatographic techniques. Their structures were identified by NMR, MS, CD and optical rotation. Compounds 1 and 2 were new compounds. Their anti-diabetic activities in vitro were evaluated, and compound 1 showed moderate inhibitory activity toward XOD at 10 μmol·L~(-1) with the inhibition rate of 69.9%.
Endophytes/chemistry*
;
Hypoglycemic Agents/chemistry*
;
Magnetic Resonance Spectroscopy
;
Molecular Structure
;
Secondary Metabolism
;
Talaromyces/chemistry*
;
Tylophora/microbiology*
;
Xanthine Oxidase/antagonists & inhibitors*

Result Analysis
Print
Save
E-mail