1.Apelin promotes proliferation, migration, and angiogenesis in bladder cancer by activating the FGF2/FGFR1 pathway.
Wei SU ; Houhua LAI ; Xin TANG ; Qun ZHOU ; Yachun TANG ; Hao FU ; Xuancai CHEN
Journal of Southern Medical University 2025;45(6):1289-1296
OBJECTIVES:
To investigate the role of apelin in regulating proliferation, migration and angiogenesis of bladder cancer cells and the possible regulatory mechanism.
METHODS:
GEO database was used to screen the differentially expressed genes in bladder cancer tissues and cells. Bladder cancer and paired adjacent tissues were collected from 60 patients for analysis of apelin expressions in relation to clinicopathological parameters. In cultured bladder cancer J82 cells and human umbilical vein endothelial cells (HUVECs), the effects of transfection with an apelin-overexpressing plasmid or specific siRNAs targeting apelin, fibroblast growth factor 2 (FGF2) and fibroblast growth factor receptor 1 (FGFR1) on proliferation and migration of J82 cells and tube formation in HUVECs were examined using plate cloning assay, Transwell assay, and angiogenesis assay; the changes in FGF2 expression and FGFR1 phosphorylation were detected using Western blotting.
RESULTS:
The expression level of apelin was significantly higher in bladder cancer tissues than adjacent tissues, and bladder cancer cell lines (T24 and J82) also expressed higher mRNA and protein levels of apelin than SV-HUC-1 cells. Apelin expression level in bladder cancer tissues was correlated with tumor invasion, distant metastasis and advanced TNM stages. Apelin knockdown significantly suppressed proliferation and migration of J82 cells and decreased the total angiogenic length of HUVECs. In contrast, apelin overexpression significantly promoted proliferation and migration and enhanced FGFR1 phosphorylation in J82 cells, and increased the total angiogenesis length in HUVECs, but this effects were effectively mitigated by transfection of the cells with FGF2 siRNA or FGFR1 siRNA.
CONCLUSIONS
High expression of apelin promotes J82 cell proliferation and migration and HUVEC angiogenesis by promoting activation of the FGF2/FGFR1 pathway.
Humans
;
Urinary Bladder Neoplasms/blood supply*
;
Receptor, Fibroblast Growth Factor, Type 1/metabolism*
;
Cell Proliferation
;
Cell Movement
;
Fibroblast Growth Factor 2/metabolism*
;
Neovascularization, Pathologic
;
Human Umbilical Vein Endothelial Cells
;
Cell Line, Tumor
;
Signal Transduction
;
Apelin
;
Intercellular Signaling Peptides and Proteins/genetics*
;
Female
;
Male
;
Angiogenesis
2.Saponins from Aralia taibaiensis protect against brain ischemia/reperfusion injuries by regulating the apelin/AMPK pathway.
Zhengrong LI ; Yuwen LIU ; Kedi LIU ; Xingru TAO ; Naping HU ; Wangting LI ; Jialin DUAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(3):299-310
Aralia taibaiensi, widely distributed in western China, particularly in the Qinba Mountains, has been utilized as a folk medicine for treating diabetes, gastropathy, rheumatism, and cardiovascular diseases. Saponins from A. taibaiensis (sAT) have demonstrated protective effects against oxidative stress and mitochondrial dysfunction induced by ischemia/reperfusion (I/R). However, the underlying mechanisms remain unclear. In vivo, middle cerebral artery occlusion/reperfusion (MCAO/R) induced inflammatory infiltration, neuronal injury, cell apoptosis, mitochondrial dysfunction, and oxidative stress in the ischaemic penumbra, which were effectively mitigated by sAT. sAT increased the mRNA and protein expression levels of apelin and its receptor apelin/apelin receptors (ARs) both in vivo and in vitro. (Ala13)-Apelin-13 (F13A) and small interfering RNA (siRNA) abolished the regulatory effects of sAT on neuroprotection mediated by adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/protein kinase B (Akt). Furthermore, sAT induced apelin/AR expression by simultaneously inhibiting P38 mitogen-activated protein kinase (P38 MAPK)/activating transcription factor 4 (ATF4) and upregulating hypoxia-inducible factor-1α (HIF-1α). Our findings indicate that sAT regulates apelin/AR/AMPK by inhibiting P38 MAPK/ATF4 and upregulating HIF-1a, thereby suppressing oxidative stress and mitochondrial dysfunction.
Animals
;
Reperfusion Injury/prevention & control*
;
Aralia/chemistry*
;
Saponins/administration & dosage*
;
AMP-Activated Protein Kinases/genetics*
;
Male
;
Apelin/genetics*
;
Signal Transduction/drug effects*
;
Neuroprotective Agents/administration & dosage*
;
Brain Ischemia/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Oxidative Stress/drug effects*
;
Apelin Receptors/genetics*
;
Humans
;
Apoptosis/drug effects*
;
Mice
3.Quercetin Attenuates Atherosclerosis via Modulating Apelin Signaling Pathway Based on Plasma Metabolomics.
Li-Qun LIU ; Peng ZHANG ; Ying-Zi QI ; Hui LI ; Yue-Hua JIANG ; Chuan-Hua YANG
Chinese journal of integrative medicine 2023;29(12):1121-1132
OBJECTIVE:
To interpret the pharmacology of quercetin in treatment of atherosclerosis (AS).
METHODS:
Fourteen apolipoprotein E-deficient (ApoE-/-) mice were divided into 2 groups by a random number table: an AS model (ApoE-/-) group and a quercetin treatment group (7 in each). Seven age-matched C57 mice were used as controls (n=7). Quercetin [20 mg/(kg·d)] was administered to the quercetin group intragastrically for 8 weeks for pharmacodynamic evaluation. Besides morphological observation, the distribution of CD11b, F4/80, sirtuin 1 (Sirt1) and P21 was assayed by immunohistochemistry and immunofluorescence to evaluate macrophage infiltration and tissue senescence. Ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MSC/MS) was performed to study the pharmacology of quercetin against AS. Then, simultaneous administration of an apelin receptor antagonist (ML221) with quercetin was conducted to verify the possible targets of quercetin. Key proteins in apelin signaling pathway, such as angiotensin domain type 1 receptor-associated proteins (APJ), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), tissue plasminogen activator (TPA), uncoupling protein 1 (UCP1) and angiotensin II receptor 1 (AT1R), were assayed by Western blot.
RESULTS:
Quercetin administration decreased lipid deposition in arterial lumen and improved the morphology of ApoE-/- aortas in vivo. Quercetin decreased the densities of CD11b, F4/80 and P21 in the aorta and increased the level of serum apelin and the densities of APJ and Sirt1 in the aorta in ApoE-/- mice (all P<0.05). Plasma metabolite profiling identified 118 differential metabolites and showed that quercetin affected mainly glycerophospholipids and fatty acyls. Bioinformatics analysis suggested that the apelin signaling pathway was one of the main pathways. Quercetin treatment increased the protein expressions of APJ, AMPK, PGC-1α, TPA and UCP1, while decreased the AT1R level (all P<0.05). After the apelin pathway was blocked by ML221, the effect of quercetin was abated significantly, confirming that quercetin attenuated AS by modulating the apelin signaling pathway (all P<0.05).
CONCLUSION
Quercetin alleviated AS lesions by up-regulation the apelin signaling pathway.
Mice
;
Animals
;
Apelin
;
Tissue Plasminogen Activator/metabolism*
;
Quercetin/therapeutic use*
;
AMP-Activated Protein Kinases/metabolism*
;
Sirtuin 1/metabolism*
;
Signal Transduction/physiology*
;
Atherosclerosis/metabolism*
;
Apolipoproteins E
4.Sacubitril/valsartan attenuates left ventricular remodeling and improve cardiac function by upregulating apelin/APJ pathway in rats with heart failure.
Hong Zhi LIU ; Chuan Yu GAO ; Fang YUAN ; Yu XU ; Huan TIAN ; Su Qin WANG ; Peng Fei ZHANG ; Ya Nan SHI ; Jing Jing WEI
Chinese Journal of Cardiology 2022;50(7):690-697
Objective: To investigate the effect and mechanism of sacubitril/valsartan on left ventricular remodeling and cardiac function in rats with heart failure. Methods: A total of 46 SPF-grade male Wistar rats weighed 300-350 g were acclimatized to the laboratory for 7 days. Rats were then divided into 4 groups: the heart failure group (n=12, intraperitoneal injection of adriamycin hydrochloride 2.5 mg/kg once a week for 6 consecutive weeks, establishing a model of heart failure); heart failure+sacubitril/valsartan group (treatment group, n=12, intragastric administration with sacubitril/valsartan 1 week before the first injection of adriamycin, at a dose of 60 mg·kg-1·d-1 for 7 weeks); heart failure+sacubitril/valsartan+APJ antagonist F13A group (F13A group, n=12, adriamycin and sacubitril/valsartan, intraperitoneal injection of 100 μg·kg-1·d-1 APJ antagonist F13A for 7 weeks) and control group (n=10, intraperitoneal injection of equal volume of normal saline). One week after the last injection of adriamycin or saline, transthoracic echocardiography was performed to detect the cardiac structure and function, and then the rats were executed, blood and left ventricular specimens were obtained for further analysis. Hematoxylin-eosin staining and Masson trichrome staining were performed to analyze the left ventricular pathological change and myocardial fibrosis. TUNEL staining was performed to detect cardiomyocyte apoptosis. mRNA expression of left ventricular myocardial apelin and APJ was detected by RT-qRCR. ELISA was performed to detect plasma apelin-12 concentration. The protein expression of left ventricular myocardial apelin and APJ was detected by Western blot. Results: Seven rats survived in the heart failure group, 10 in the treatment group, and 8 in the F13A group. Echocardiography showed that the left ventricular end-diastolic diameter (LVEDD) and the left ventricular end-systolic diameter (LVESD) were higher (both P<0.05), while the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were lower in the heart failure group than in the control group (both P<0.05). Compared with the heart failure group, rats in the treatment group were featured with lower LVEDD and LVESD (both P<0.05), higher LVEF and LVFS (both P<0.05), these beneficial effects were reversed in rats assigned to F13A group (all P<0.05 vs. treatment group). The results of HE staining showed that the cardiomyocytes of rats in the control group were arranged neatly and densely structured, the cardiomyocytes in the heart failure group were arranged in disorder, distorted and the gap between cells was increased, the cardiomyocytes in the treatment group were slightly neat and dense, and cardiomyocytes in the F13A group were featured similarly as the heart failure group. Masson staining showed that there were small amount of collagen fibers in the left ventricular myocardial interstitium of the control group, while left ventricular myocardial fibrosis was significantly increased, and collagen volume fraction (CVF) was significantly higher in the heart failure group than that of the control group (P<0.05). Compared with the heart failure group, the left ventricular myocardial fibrosis and the CVF were reduced in the treatment group (both P<0.05), these effects were reversed in the F13A group (all P<0.05 vs. treatment group). TUNEL staining showed that the apoptosis index (AI) of cardiomyocytes in rats was higher in the heart failure group compared with the control group (P<0.05), which was reduced in the treatment group (P<0.05 vs. heart failure group), this effect again was reversed in the F13A group (P<0.05 vs. treatment group). The results of RT-qPCR and Western blot showed that the mRNA and protein levels of apelin and APJ in left ventricular myocardial tissue of rats were downregulated in heart failure group (all P<0.05) compared with the control group. Compared with the heart failure group, the mRNA and protein levels of apelin and APJ were upregulated in the treatment group (all P<0.05), these effects were reversed in the F13A group (all P<0.05 vs. treatment group). ELISA test showed that the plasma apelin concentration of rats was lower in the heart failure group compared with the control group (P<0.05); compared with the heart failure group, the plasma apelin concentration of rats was higher in the treatment group (P<0.05), this effect was reversed in the F13A group (P<0.05 vs. treatment group). Conclusion: Sacubitril/valsartan can partially reverse left ventricular remodeling and improve cardiac function in rats with heart failure through modulating Apelin/APJ pathways.
Aminobutyrates/pharmacology*
;
Animals
;
Apelin/metabolism*
;
Biphenyl Compounds
;
Collagen/metabolism*
;
Doxorubicin/pharmacology*
;
Fibrosis
;
Heart Failure/pathology*
;
Male
;
Myocytes, Cardiac/pathology*
;
RNA, Messenger/metabolism*
;
Rats
;
Rats, Wistar
;
Valsartan/pharmacology*
;
Ventricular Function, Left/drug effects*
;
Ventricular Remodeling
5.Research Progress on Role and Mechanism of Elabela in Organ Fibrosis.
Yu ZHANG ; Pei Ting LUO ; Xin Yang LI ; Wen Peng CUI
Acta Academiae Medicinae Sinicae 2021;43(2):278-282
Elabela is a newly discovered peptide in recent years.It is the endogenous ligand of Apelin receptor(APJ)and plays an important role in embryonic development and adult organs.Elabela-APJ axis is closely related to organ fibrosis.Elabela can protect the functions of heart and kidney by antagonizing renin-angiotensin system and regulating blood pressure.In addition,it can prevent kidney and heart fibrosis by down-regulating the expression of fibrosis and inflammatory factors.However,there is a positive correlation between the level of Elabela and the degree of liver fibrosis,suggesting that Elabela may play a role in promoting liver fibrosis.This review aims to explore the role of Elabela-APJ axis in renal fibrosis,cardiac fibrosis,and liver fibrosis,and to provide a new therapeutic target for organ fibrosis.
Apelin
;
Apelin Receptors
;
Blood Pressure
;
Female
;
Fibrosis
;
Humans
;
Peptide Hormones
;
Pregnancy
6.Role of BET Bromodomain in Hematopoietic Differentiation from hESCs.
Zi-Cen FENG ; Yu-Qi WEN ; Meng-Ge WANG ; Qian TU ; Hong-Tao WANG ; Zheng-Yu WANG ; Jia-Xi ZHOU
Journal of Experimental Hematology 2018;26(4):1186-1193
OBJECTIVETo explore the role of bromodomain and extra terminal (BET) bromodomain in hematopoietic differentiation from human enbryonic stem cells (hESC).
METHODSThe effect of BET hematopoietic inhibitor I-BET151 on hematopoietic differentiation from hESC was detected by using a monolayer hematopoietic defferentiation model, immunofluorescence, flow cytometry and real-time PCR; moreover the role of I-BET151 in process of hematopoietic differentiation was explored by adding I-BET151 in different differentiation stages.
RESULTSThe analysis results of immunofluorescence, flow cytometry and real-time PCR showed that I-BET 151 significantly inhibited the generation of CD43 positive hematopoietic stem and progenitor cells (HSPCs). It was found that the addition of I-BET 151 in different stages, including APLNR lateral plate mesoderm production, CD34CD31 hemogenic endothelium (HEP) generation and endothelial-to-hematopoietic transition, significantly suppressed the generation of CD43 positive hematopoietic progenitor cells.
CONCLUSIONI-BET 151 inhibites hematopoietic differentiation from hESCs at several stages, suggesting that the BET bromodomain plays important roles in multiple stages of hematopoietic differentiation from hESCs.
Apelin Receptors ; Cell Differentiation ; Flow Cytometry ; Hemangioblasts ; Hematopoietic Stem Cells ; Human Embryonic Stem Cells ; Humans
7.A preliminary investigation of relationship between serum apelin level and pulmonary artery pressure in children with congenital heart disease.
Chao MA ; Ding-Rong SHEN ; Qing ZHANG ; Yi-Qun DING ; Yuan-Xiang WANG ; Le PENG ; Bao-Ying MENG ; Yun-Xing TI
Chinese Journal of Contemporary Pediatrics 2016;18(4):340-344
OBJECTIVETo preliminarily investigate the relationship between serum apelin level and pulmonary artery pressure in children with congenital heart disease.
METHODSOne hundred and twenty-six children with congenital heart disease undergoing surgical treatment were enrolled as subjects. The serum level of apelin was determined before surgery and at 7 days after surgery. The ratio of pulmonary artery systolic pressure to aortic systolic pressure (Pp/Ps) was calculated before extracorporeal circulation. According to the Pp/Ps value, patients were classified into non-pulmonary arterial hypertension (PAH) group, mild PAH group, moderate PAH group, and severe PAH group. Pulmonary artery mean pressure was estimated by echocardiography at 7 days after surgery.
RESULTSThe non-PAH group had the highest serum level of apelin before and after surgery, followed by the mild PAH group, moderate PAH group, and severe PAH group (P<0.05). All groups had significantly increased serum levels of apelin at 7 days after surgery (P<0.05). The serum level of apelin was negatively correlated with pulmonary artery pressure before surgery (r=-0.51, P<0.05) and at 7 days after surgery (r=-0.54, P<0.05).
CONCLUSIONSThe decrease in serum apelin level is associated with the development of pulmonary hypertension in children with congenital heart disease. The significance of serum apelin in predicting the development and degree of pulmonary hypertension in children with congenital heart disease deserves further studies.
Apelin ; Blood Pressure ; Child, Preschool ; Female ; Heart Defects, Congenital ; blood ; physiopathology ; Humans ; Hypertension, Pulmonary ; blood ; Infant ; Intercellular Signaling Peptides and Proteins ; blood ; Male ; Pulmonary Artery ; physiopathology
8.Apelin-APJ effects of ginsenoside-Rb1 depending on hypoxia-induced factor 1α in hypoxia neonatal cardiomyocytes.
Hong-liang KONG ; Zhan-quan LI ; Shu-mei ZHAO ; Long YUAN ; Zhi-lin MIAO ; Ying LIU ; Ru-ming GUAN
Chinese journal of integrative medicine 2015;21(2):139-146
OBJECTIVETo investigate whether ginsenoside-Rb1 (Gs-Rb1) inhibits the apoptosis of hypoxia cardiomyocytes by up-regulating apelin-APJ system and whether the system is affected by hypoxia-induced factor 1α (Hif-1α).
METHODSNeonatal rat cardiomyocytes were randomly divided into 6 groups: a control group, a simple CoCl group, a simple Gs-Rb1 group, a CoCl and Gs-Rb1 hypoxia group, a CoCl and 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) group, a CoCl and YC-1 group and a Gs-Rb1 group, in which YC-1 inhibits the synthesis and accelerates the degradation of Hif-1a. The concentration of CoCl, Gs-Rb1 and YC-1 was 500 μmol/L, 200 μmol/L and 5 μmol/L, respectively; the apoptosis ratio was analyzed with a flow cytometer; and apelin, APJ and Hif-1α were assayed with immunocytochemistry, Western blot assays and reverse transcription polymerase chain reaction (RT-PCR).
RESULTS(1) The anti-apoptosis effect of Gs-Rb1 on hypoxia cardiomyocytes was significantly inhibited by YC-1; (2) Hypoxia significantly up-graded the expression of mRNA and protein of apelin; this effect was further reinforced by Gs-Rb1 and significantly inhibited by YC-1; (3) Gs-Rb1 further strengthened the expression of APJ mRNA and APJ proteins once hypoxia occurred, which was significantly inhibited by YC-1; (4) Gs-Rb1 significantly increased the expression of Hif-1α, which was completely abolished by YC-1; (5) There was a negative relationship between AR and apelin (or APJ, including mRNA and protein), a positive correlation between apelin (or APJ) protein and Hif-1a protein, in hypoxia cardiomyocytes.
CONCLUSIONThe apelin-APJ system plays an important role in the anti-apoptosis effect of Gs-Rb1 on hypoxia neonatal cardiomyocytes, which was partly adjusted by Hif-1α.
Animals ; Animals, Newborn ; Apelin ; Apelin Receptors ; Cell Hypoxia ; drug effects ; Ginsenosides ; pharmacology ; Hypoxia-Inducible Factor 1, alpha Subunit ; metabolism ; Immunohistochemistry ; Intercellular Signaling Peptides and Proteins ; genetics ; metabolism ; Myocytes, Cardiac ; cytology ; drug effects ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Rats, Wistar ; Receptors, G-Protein-Coupled ; metabolism
9.Peripheral blood apelin level in patients with acute ST-elevation myocardial infarction and its prognostic value.
Jian SHEN ; Xu ZHANG ; Zhiming LI ; Guiting XIE ; Shengxiong NONG ; Yuansheng SHEN
Journal of Southern Medical University 2015;35(3):407-412
OBJECTIVETo investigate peripheral blood apelin levels in patients with acute ST-elevation myocardial infarction (STEMI) and their correlation with the one-year outcome of the patients.
METHODSA total of 153 consecutive patients, including 93 with acute STEMI undergoing primary percutaneous coronary intervention (PCI), 30 with acute STEMI and 30 with stable angina all undergoing elective PCI, and 10 healthy control subjects were examined for peripheral blood apelin levels and clinical parameters. The composite endpoints (CEPs) were determined at the one year follow-up.
RESULTSApelin levels were significantly decreased in all the patients at admission, but increased following primary PCI. Apelin levels showed a negative correlation with glycosylated hemoglobin levels. At one year following PCI, the patients with a lower apelin level showed an increased risk for lowered left ventricular ejection fraction ratio, but further analysis failed to provide evidence that apelin levels were predictive of the one-year outcome.
CONCLUSIONPeripheral blood apelin levels might be useful for predicting the clinical outcomes of patients with acute STEMI.
Acute Disease ; Apelin ; Biomarkers ; blood ; Case-Control Studies ; Humans ; Intercellular Signaling Peptides and Proteins ; blood ; Myocardial Infarction ; blood ; diagnosis ; Percutaneous Coronary Intervention ; Prognosis ; Ventricular Function, Left
10.Changes of apelin and its receptor in lung tissue of rats with pulmonary hypertension induced by monocrotaline.
Qing WANG ; Gui-Qin WANG ; Ling-Xia PANG ; Feng XUE ; Xing-Yan CHEN ; Ran CHEN ; Xiao-Xia KONG ; Yong-Sheng GONG ; Xiao-Fang FAN
Chinese Journal of Applied Physiology 2013;29(2):101-105
OBJECTIVETo observe the change of apelin and its receptor (APJ) in the lung tissue of rats with pulmonary hypertension induced by monocrotaline and to explore its significance.
METHODSTwenty-five male SD rats were randomly divided into control group (n = 10) and monocrotaline group (n = 15). On the twenty-first day after the rats were intraperitoneally injected 60 mg/kg monocrotaline for monocrotaline group or equal volume vehicle for control group, the mean pulmonary artery pressure was measured by right heart catheterization. Histopathological study of lung tissue was done with hematoxylin-eosin (HE) and Masson's trichrome staining. The concentration of apelin in the plasma was measured by radioimmunoassay. The expressions of apelin/APJ proteins and genes in lung tissue were measured respectively by Western blot and reverse transcription polymerase chain reaction (RT-PCR).
RESULTSThe mean pulmonary arterial pressure, right ventricular hypertrophy, pulmonary vascular remodeling index, content of apelin protein in lung tissue of monocrotaline group were higher than those in control group. APJ protein and gene expression in monocrotaline group were significantly lower than those in control group (P < 0.01, P < 0.05), but apelin gene expression in the lung tissue between the two groups had no significant difference.
CONCLUSIONEndogenous apelin/APJ dysfunction may play an important role in the development of pulmonary hypertension induced by monocrotaline.
Animals ; Apelin ; Apelin Receptors ; Hypertension, Pulmonary ; chemically induced ; metabolism ; Intercellular Signaling Peptides and Proteins ; metabolism ; Lung ; metabolism ; Male ; Monocrotaline ; adverse effects ; Rats ; Rats, Sprague-Dawley ; Receptors, G-Protein-Coupled ; metabolism

Result Analysis
Print
Save
E-mail