1.Akkermansia muciniphila-derived acetate activates the hepatic AMPK/SIRT1/PGC-1α axis to alleviate ferroptosis in metabolic-associated fatty liver disease.
Aoxiang ZHUGE ; Shengjie LI ; Shengyi HAN ; Yin YUAN ; Jian SHEN ; Wenrui WU ; Kaicen WANG ; Jiafeng XIA ; Qiangqiang WANG ; Yifeng GU ; Enguo CHEN ; Lanjuan LI
Acta Pharmaceutica Sinica B 2025;15(1):151-167
Emerging evidences have indicated the role of ferroptosis in the progression of metabolic-associated fatty liver disease (MAFLD); thus, inhibiting ferroptosis is a promising strategy for the development of MAFLD therapeutics. Recent studies have demonstrated the antioxidative effect of the gut commensal bacterium Akkermansia muciniphila (A. muc); however, whether it can alleviate ferroptosis remains unclear. The current study indicates A. muc intervention efficiently reversed high-fat high-fructose diet (HFHFD)-induced lipid peroxidation and ferroptosis in the liver. These beneficial effects were mediated by activation of the hepatic AMPK/SIRT1/PGC-1α axis, as evidenced by the finding that AMPK deficiency abrogated the amelioration of lipid peroxidation in vitro and in vivo. Furthermore, the short-chain fatty acids (SCFAs) were enriched upon A. muc treatment, and acetate was identified as a key activator of hepatic AMPK signalling. Mechanistically, microbiota-derived acetate was transported to the liver and metabolized to adenosine monophosphate (AMP), which triggered AMPK activation. Furthermore, a colonization assay in germ-free mice confirmed that A. muc mediated antiferroptotic effects in the absence of other microbes. These data indicated that A. muc exerts antiferroptotic effects against MAFLD, at least partially by producing acetate, which activates the hepatic AMPK/SIRT1/PGC-1α axis to alleviate ferroptosis via the inhibition of polyunsaturated fatty acid (PUFA) synthesis.
2.The Relationship Between the Gut Microbiome and Neurodegenerative Diseases.
Xueling ZHU ; Bo LI ; Pengcheng LOU ; Tingting DAI ; Yang CHEN ; Aoxiang ZHUGE ; Yin YUAN ; Lanjuan LI
Neuroscience Bulletin 2021;37(10):1510-1522
Many recent studies have shown that the gut microbiome plays important roles in human physiology and pathology. Also, microbiome-based therapies have been used to improve health status and treat diseases. In addition, aging and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, have become topics of intense interest in biomedical research. Several researchers have explored the links between these topics to study the potential pathogenic or therapeutic effects of intestinal microbiota in disease. But the exact relationship between neurodegenerative diseases and gut microbiota remains unclear. As technology advances, new techniques for studying the microbiome will be developed and refined, and the relationship between diseases and gut microbiota will be revealed. This article summarizes the known interactions between the gut microbiome and neurodegenerative diseases, highlighting assay techniques for the gut microbiome, and we also discuss the potential therapeutic role of microbiome-based therapies in diseases.
Alzheimer Disease/therapy*
;
Gastrointestinal Microbiome
;
Humans
;
Microbiota
;
Neurodegenerative Diseases/therapy*
;
Parkinson Disease/therapy*
3. The Relationship Between the Gut Microbiome and Neurodegenerative Diseases
Xueling ZHU ; Bo LI ; Pengcheng LOU ; Tingting DAI ; Aoxiang ZHUGE ; Yin YUAN ; Lanjuan LI ; Xueling ZHU ; Bo LI ; Pengcheng LOU ; Tingting DAI ; Aoxiang ZHUGE ; Yin YUAN ; Lanjuan LI ; Yang CHEN
Neuroscience Bulletin 2021;37(10):1510-1522
Many recent studies have shown that the gut microbiome plays important roles in human physiology and pathology. Also, microbiome-based therapies have been used to improve health status and treat diseases. In addition, aging and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, have become topics of intense interest in biomedical research. Several researchers have explored the links between these topics to study the potential pathogenic or therapeutic effects of intestinal microbiota in disease. But the exact relationship between neurodegenerative diseases and gut microbiota remains unclear. As technology advances, new techniques for studying the microbiome will be developed and refined, and the relationship between diseases and gut microbiota will be revealed. This article summarizes the known interactions between the gut microbiome and neurodegenerative diseases, highlighting assay techniques for the gut microbiome, and we also discuss the potential therapeutic role of microbiome-based therapies in diseases.

Result Analysis
Print
Save
E-mail