1.Deep learning algorithms for intelligent construction of a three-dimensional maxillofacial symmetry reference plane.
Yujia ZHU ; Hua SHEN ; Aonan WEN ; Zixiang GAO ; Qingzhao QIN ; Shenyao SHAN ; Wenbo LI ; Xiangling FU ; Yijiao ZHAO ; Yong WANG
Journal of Peking University(Health Sciences) 2025;57(1):113-120
OBJECTIVE:
To develop an original-mirror alignment associated deep learning algorithm for intelligent registration of three-dimensional maxillofacial point cloud data, by utilizing a dynamic graph-based registration network model (maxillofacial dynamic graph registration network, MDGR-Net), and to provide a valuable reference for digital design and analysis in clinical dental applications.
METHODS:
Four hundred clinical patients without significant deformities were recruited from Peking University School of Stomatology from October 2018 to October 2022. Through data augmentation, a total of 2 000 three-dimensional maxillofacial datasets were generated for training and testing the MDGR-Net algorithm. These were divided into a training set (1 400 cases), a validation set (200 cases), and an internal test set (200 cases). The MDGR-Net model constructed feature vectors for key points in both original and mirror point clouds (X, Y), established correspondences between key points in the X and Y point clouds based on these feature vectors, and calculated rotation and translation matrices using singular value decomposition (SVD). Utilizing the MDGR-Net model, intelligent registration of the original and mirror point clouds were achieved, resulting in a combined point cloud. The principal component analysis (PCA) algorithm was applied to this combined point cloud to obtain the symmetry reference plane associated with the MDGR-Net methodology. Model evaluation for the translation and rotation matrices on the test set was performed using the coefficient of determination (R2). Angle error evaluations for the three-dimensional maxillofacial symmetry reference planes were constructed using the MDGR-Net-associated method and the "ground truth" iterative closest point (ICP)-associated method were conducted on 200 cases in the internal test set and 40 cases in an external test set.
RESULTS:
Based on testing with the three-dimensional maxillofacial data from the 200-case internal test set, the MDGR-Net model achieved an R2 value of 0.91 for the rotation matrix and 0.98 for the translation matrix. The average angle error on the internal and external test sets were 0.84°±0.55° and 0.58°±0.43°, respectively. The construction of the three-dimensional maxillofacial symmetry reference plane for 40 clinical cases took only 3 seconds, with the model performing optimally in the patients with skeletal Class Ⅲ malocclusion, high angle cases, and Angle Class Ⅲ orthodontic patients.
CONCLUSION
This study proposed the MDGR-Net association method based on intelligent point cloud registration as a novel solution for constructing three-dimensional maxillofacial symmetry reference planes in clinical dental applications, which can significantly enhance diagnostic and therapeutic efficiency and outcomes, while reduce expert dependence.
Humans
;
Deep Learning
;
Algorithms
;
Imaging, Three-Dimensional/methods*
;
Male
;
Female
;
Maxilla/diagnostic imaging*
;
Adult
2.Evaluation of the function and activity of masticatory muscles using a self-developed wireless surface electromyography system.
Wenbo LI ; Yujia ZHU ; Qingzhao QIN ; Shenyao SHAN ; Zixiang GAO ; Aonan WEN ; Yong WANG ; Yijiao ZHAO
West China Journal of Stomatology 2025;43(3):346-353
OBJECTIVES:
This study aimed to evaluate the repeatability and reliability of a self-developed domestic wireless surface electromyography (sEMG) system (Oralmetry) in assessing the activity of the temporalis and masseter muscles to provide theoretical support for its clinical application.
METHODS:
Twenty-two volunteers were recruited. Through multiple repeated measurements, the sEMG signals of bilateral anterior temporalis and masseter muscles during maximum voluntary clenching were collected using the self-developed sEMG device, Oralmetry, and two commercial sEMG devices (Zebris and Teethan), filtered, screened, and standardized. Seven sEMG indicators for assessing masticatory muscle function were calculated. The intraclass correlation coefficient (ICC) was used to evaluate the repeatability of the measurements from the three sEMG devices, and statistical analysis was conducted to compare the consistency of the seven sEMG indicators obtained from the devices.
RESULTS:
Among the 22 participants, the ICC values of the repeated measurements from the three sEMG devices ranged from 0.88 to 0.99. The measurements of three sEMG indicators (antero-posterior coeffificient, percentage overlapping coeffificient_MM, and percentage overlapping coeffificient_TA) obtained by Zebris were significantly different from those obtained by Oralmetry and Teethan (P<0.05). No significant differences in the measurements of the seven sEMG indicators were found between Oralmetry and Teethan.
CONCLUSIONS
Oralmetry and the two commercial sEMG devices demonstrated good repeatability in capturing sEMG indicators for evaluating masticatory muscle function. In particular, Oralmetry showed the highest ICC values. All three devices also exhibited good consistency in measuring sEMG indicators, and a high agreement was observed between the two wireless sEMG devices (Oralmetry and Teethan). These findings provide theoretical support for the clinical application of Oralmetry.
Humans
;
Electromyography/methods*
;
Masseter Muscle/physiology*
;
Masticatory Muscles/physiology*
;
Wireless Technology
;
Reproducibility of Results
;
Temporal Muscle/physiology*
;
Male
;
Adult
;
Female
;
Young Adult
3.Digital design and manufacturing method of double constrained split guide for orthodontic miniscrew implantation.
Xin DU ; Aonan WEN ; Zixiang GAO ; Zhihua LI ; Sheng ZHANG ; Yong WANG ; Yijiao ZHAO
West China Journal of Stomatology 2025;43(4):603-612
This study explored a novel digital design and fabrication method for a double constrained split orthodontic miniscrew guide to improve the accuracy and safety of clinical miniscrew implantation and reduce related complications. A patient requiring miniscrew implantation was selected, and data were acquired using cone beam computed tomography (CBCT) and intraoral optical scanning. For the construction of a double constrained split guide including a screw-hole guide and an insertion rod guide, different types of software such as Mimics 24.0, Geomagic wrap 2021, and Materialise magics 21.0 were utilized for 3D reconstruction, model integration, and guide design. The guide was then fabricated via laser metal 3D printing. Model and intraoral try-in results demonstrated that the guide fitted well and was stable. Postoperative CBCT verified that the final miniscrew implantation site was consistent with the preoperative design, and no related complications occurred. This double constrained split orthodontic miniscrew guide provides a precise and safe digital solution for clinical miniscrew implantation.
Humans
;
Bone Screws
;
Cone-Beam Computed Tomography
;
Printing, Three-Dimensional
;
Orthodontic Anchorage Procedures/instrumentation*
;
Imaging, Three-Dimensional
;
Computer-Aided Design
4.Preliminary study on the influence of the dimensional stability of 3D printed resin master model on the replication accuracy of implant replicas.
Xin LI ; Yuzong LU ; Yongtao YANG ; Aonan WEN ; Yong WANG ; Yijiao ZHAO
West China Journal of Stomatology 2025;43(5):689-695
OBJECTIVES:
This study aimed to investigate the influence of the dimensional stability of 3D printed resin master model on the replication accuracy of implant replicas.
METHODS:
Ten digital impressions of patients undergoing continuous crowns or fixed bridge restoration supported by two implants were obtained, and resin models with implant replicas were 3D printed. Scanning rods were fixed on the replicas 3, 7, and 14 days after printing. The 3D, linear, and angular deviations of the scanning rods at different times were analyzed through Geomagic Wrap 2021 software.
RESULTS:
The position of the replicas shifted mesiolingually, in the same direction as the shrinkage of the model. From day 7 onward, the 3D, distance linear, and angular deviations of the replicas (scanning rod) significantly increased compared with those on the 3rd day (P<0.05). On the 14th day, the changes were even more pronounced, with the above deviations showing statistical significance (P<0.05) compared with those for the 3-day and 7-day groups. No statistical difference in height linear deviation was observed among the groups.
CONCLUSIONS
The insufficient dimensional stability of 3D printed resin models can lead to changes in the relative position and angle of the replicas, thereby affecting the accuracy of the replicas in recreating the implant's position. Complete manufacturing of prosthesis is recommended within 7 days after the model is printed.
Printing, Three-Dimensional
;
Humans
;
Dental Implants
;
Models, Dental
;
Dental Impression Technique
;
Crowns
5.Preliminary evaluation of chin symmetry with three dimentional soft tissue spatial angle wireframe template
Liang LYU ; Mingjin ZHANG ; Aonan WEN ; Yijiao ZHAO ; Yong WANG ; Jing LI ; Gengchen YANG ; Dawei LIU
Journal of Peking University(Health Sciences) 2024;56(1):106-110
Objective:To develop an efficient and robust method based on three dimensional facial landmarks for evaluating chin region asymmetry at the soft tissue level and to compare it with the tradi-tional mirror-overlap analysis method in order to test its availability.Methods:Standard symmetrical face was used for mental tubercle coordinate transformation so as to filter soft tissue three dimensional spatial angle and construct corresponding three dimensional spatial angle wireframe template.Ten patients aged 12-32 years with clinical chin region asymmetry diagnosis at the Department of Orthodontics of Peking University Hospital of Stomatology from November 2020 to November 2021 were randomly selected.Three dimensional soft tissue face scan data of the patients were collected by three dimensional face scanner and the landmark points were automatically determined by the Meshmonk non-rigid registration algorithm pro-gram,and in this way,the asymmetric three dimensional spatial angle wireframe template and corre-sponding spatial angle parameters were generated.Mirror-overlap analysis of face scan data was also per-formed in Geomagic Studio 2015 software and deviation color maps were generated.This study took mirror-overlap analysis as the gold standard method,the response rate of chin region asymmetry was eva-luated by the outcomes of the mirror-overlap analysis and three dimensional spatial angle wireframe tem-plate analysis.Results:Nine three dimensional spatial angle indicators were selected through coordinate transformation,and the response rate was calculated using mirror-overlap analysis as the gold standard method.Among these ten selected patients,the response rate of the total chin region asymmetry was 90%(9/10).Using the deviation value of mirror-overlap analysis as a reference,the response rate of chin region asymmetry in the X dimension was 86%,the response rate of chin region asymmetry in the Y dimension was 89%,and the response rate of chin region asymmetry in the Z dimension was 100%.Conclusion:The three dimensional soft tissue spatial angle wireframe template proposed in this study has some feasibility in evaluating chin region asymmetry at the soft tissue level,and its ability to recognize asymmetry separately in the three dimensional direction is better than the mirror-overlap analysis method,and the indicators recognition rate still needs to be further improved.
6.Chairside digital design and manufacturing method for children's band and loop space maintainers
Qingzhao QIN ; Jia HU ; Xiaoxian CHEN ; Bingqing SHI ; Zixiang GAO ; Yujia ZHU ; Aonan WEN ; Yong WANG ; Yijiao ZHAO
West China Journal of Stomatology 2024;42(2):234-241
Objective This study proposes a chairside digital design and manufacturing method for band and loop space maintainers and preliminarily validates its clinical feasibility.Methods Clinical cases of 10 children requiring space maintenance caused by premature loss of primary teeth were collected.Intraoral scan data of the affected children were also collected to establish digital models of the missing teeth.Using a pediatric band and loop space maintainer de-sign software developed by our research team,a rapid personalized design of band and loop structures was achieved,and a digital model of an integrated band and loop space maintainer was ultimately generated.A chairside space maintainer was manufactured through metal computer numerical control machining for the experimental group,whereas metal 3D printing in the dental laboratory was used for the control group.A model fitting assessment was conducted for the space maintainers of both groups,and senior pediatric dental experts were invited to evaluate the clinical feasibility of the space maintainers with regard to fit and stability using the visual analogue scale scoring system.Statistical analysis was also performed.Results The time spent in designing and manufacturing the 10 space maintainers of the experimental group was all less than 1 h.Statistical analysis of expert ratings showed that the experimental group outperformed the control group with regard to fit and stability.Both types of space maintainers met clinical requirements.Conclusion The chairside digital design and manufacturing method for pediatric band and loop space maintainers proposed in this study can achieve same-day fitting of space maintainers at the first appointment,demonstrating good clinical feasibility and significant potential for clinical application.
7.A preliminary investigation of the key parameters of average value articulator based on mandibular movement trajectories in 100 adults with individual normal occlusion
Shenyao SHAN ; Yujia ZHU ; Junjie WANG ; Aonan WEN ; Zixiang GAO ; Qingzhao QIN ; Wenbo LI ; Yong WANG ; Yijiao ZHAO
Chinese Journal of Stomatology 2024;59(12):1228-1233
Objective:To explore the method of obtaining the key parameters of the average value articulator in healthy people based on mandibular movement trajectory data, with a view to providing a reference for the clinical application of the average value articulator.Methods:One hundred healthy volunteers (42 males and 58 females) with individual normal occlusion, aged 18-55 years old, who met the inclusion criteria were recruited from Beijing, and their mandibular movement trajectory data were collected. The left and right sagittal condylar inclination(SCI) and transversal condylar inclination(TCI) were obtained from the values of the articulator parameters which were generated in the mandibular movement analysis system.The SCI and TCI were grouped by gender and calculated separately for the two groups and the overall sample; the gender differences in the two parameters and the differences between the mean values of the two parameters and the average value articulator empirical values (35° for SCI and 15° for TCI) for the overall sample were compared.Results:The differences between SCI (35.8°±7.4°) and TCI [11.2° (11.3°)] in males and the corresponding parameters [35.6°±8.3° and 10.8° (9.5°), respectively] in females were not statistically significant ( t=0.10, P=0.922; Z=-0.60, P=0.552); the overall sample SCI (35.7°±7.9°) did not differ statistically from the average value articulator empirical value ( t=1.23, P=0.221), and the overall sample TCI [10.9° (10.3°)] was significantly smaller than the average value articulator empirical value ( W=5 825.00, P<0.001). Conclusions:The mandibular movement trajectory data of 100 adults with individual normal occlusion in this study shows that the gender factor does not affect the setting of the key parameters of the average value articulator, the SCI of the average value articulator empirical values is appropriate, and the TCI has the possibility of being on the large side. In the clinical use of the articulator to assist in the design of restorations, the parameter values should be rationally adjusted according to the actual situation of the patient′s dentition and mandibular movement.
8.Deep learning-assisted construction of three-dimensional face midsagittal plane based on point clouds
Yujia ZHU ; Zhenguang LIU ; Aonan WEN ; Zixiang GAO ; Qingzhao QIN ; Xiangling FU ; Yong WANG ; Jinpeng CHEN ; Yijiao ZHAO
Chinese Journal of Stomatology 2023;58(11):1178-1183
Objective:To establish an intelligent registration algorithm under the framework of original-mirror alignment algorithm to construct three-dimensional (3D) facial midsagittal plane automatically. Dynamic Graph Registration Network (DGRNet) was established to realize the intelligent registration, in order to provide a reference for clinical digital design and analysis.Methods:Two hundred clinical patients without significant facial deformities were collected from October 2020 to October 2022 at Peking University School and Hospital of Stomatology. The DGRNet consists of constructing the feature vectors of key points in point original and mirror point clouds (X, Y), obtaining the correspondence of key points, and calculating the rotation and translation by singular value decomposition. Original and mirror point clouds were registrated and united. The principal component analysis (PCA) algorithm was used to obtain the DGRNet alignment midsagittal plane. The model was evaluated based on the coefficient of determination (R 2) index for the translation and rotation matrix of test set. The angle error was evaluated on the 3D facial midsagittal plane constructed by the DGRNet alignment midsagittal plane and the iterative closet point (ICP) alignment midsagittal plane for 50 cases of clinical facial data. Results:The average angle error of the DGRNet alignment midsagittal plane and ICP alignment midsagittal plane was 1.05°±0.56°, and the minimum angle error was only 0.13°. The successful detection rate was 78% (39/50) within 1.50° and 90% (45/50) within 2.00°.Conclusions:This study proposes a new solution for the construction of 3D facial midsagittal plane based on the DGRNet alignment method with intelligent registration, which can improve the efficiency and effectiveness of treatment to some extent.
9.Dosimetry of organs at risk between involved field radiation and extended field radiation in patients with thoracic esophageal cancer
Cheng YUAN ; Mingrui LIU ; Linxin SHI ; Weixian SHAO ; Qiang WANG ; Aonan DU ; Wen ZHANG ; Jianwei SUN ; Hui MIAO
Chinese Journal of Radiological Health 2022;31(2):210-213
Objective To study the irradiation dose of organs at risk (OAR) in involved field radiation and extended field radiation in patients with thoracic esophageal cancer who received intensity modulated radiotherapy (IMRT). Methods A total of 40 patients with thoracic esophageal cancer were treated with IMRT. The involved field, extended field, and OAR were outlined to generate IMRT plans. The conformity index (CI) and homogeneity index (HI) of planning target volume (PTV) and the irradiation parameters of OAR were evaluated for the two plans. Paired t-test was used for comparison of irradiation parameters. Results The PTV of both plans received the prescribed dose. There were no significant differences in CI and HI of PTV between the two groups (P = 0.317, 0.130). There were significant differences in average lung dose, lung V5, lung V20, lung V30, spinal cord Dmean, heart Dmean, heart Dmax, heart V30, heart V40, and heart V60 between the two groups (P < 0.01). Conclusion Compared with the extended field, the involved field can reduce the irradiation dose of ORA in patients with thoracic esophageal cancer, thus reducing the risk of radiation.

Result Analysis
Print
Save
E-mail