1.Research advances in autoimmune pancreatitis with pancreatic exocrine insufficiency
Xiang AO ; Chenxiao LIU ; Xianda ZHANG ; Taojing RAN ; Chunhua ZHOU ; Duowu ZOU
Journal of Clinical Hepatology 2025;41(2):395-400
Autoimmune pancreatitis is a special type of chronic pancreatitis that can lead to abnormal pancreatic exocrine function in patients. Autoimmune pancreatitis comorbid with pancreatic exocrine insufficiency has a complex pathogenesis, and there is limited research on this topic, leading to the lack of understanding of such patients in clinical practice. This article introduces the epidemiology of autoimmune pancreatitis, briefly describes the pathogenesis of pancreatic exocrine insufficiency caused by autoimmune pancreatitis, and summarizes the various detection methods for pancreatic exocrine function, nutritional assessments, lifestyle management, and drug therapy, in order to strengthen the understanding of autoimmune pancreatitis comorbid with pancreatic exocrine insufficiency and improve the clinical diagnosis and treatment of pancreatic exocrine insufficiency.
2.Plasma miRNA testing in the differential diagnosis of very early-stage hepatocellular carcinoma: a multicenter real-world study
Jie HU ; Ying XU ; Ao HUANG ; Lei YU ; Zheng WANG ; Xiaoying WANG ; Xinrong YANG ; Zhenbin DING ; Qinghai YE ; Yinghong SHI ; Shuangjian QIU ; Huichuan SUN ; Qiang GAO ; Jia FAN ; Jian ZHOU
Chinese Journal of Clinical Medicine 2025;32(3):350-354
Objective To explore the application of plasma 7 microRNA (miR7) testing in the differential diagnosis of very early-stage hepatocellular carcinoma (HCC). Methods This study is a multicenter real-world study. Patients with single hepatic lesion (maximum diameter≤2 cm) who underwent plasma miR7 testing at Zhongshan Hospital, Fudan University, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Anhui Provincial Hospital, and Peking University People’s Hospital between January 2019 and December 2024 were retrospectively enrolled. Patients were divided into very early-stage HCC group and non-HCC group, and the clinical pathological characteristics of the two groups were compared. The value of plasma miR7 levels, alpha-fetoprotein (AFP), and des-gamma-carboxy prothrombin (DCP) in the differential diagnosis of very early-stage HCC was evaluated using receiver operating characteristic (ROC) curves and area under the curve (AUC). In patients with both negative AFP and DCP (AFP<20 ng/mL, DCP<40 mAU/mL), the diagnostic value of plasma miR7 for very early-stage HCC was analyzed. Results A total of 64 528 patients from 4 hospitals underwent miR7 testing, and 1 682 were finally included, of which 1 073 were diagnosed with very early-stage HCC and 609 were diagnosed with non-HCC. The positive rate of miR7 in HCC patients was significantly higher than that in non-HCC patients (67.9% vs 24.3%, P<0.001). ROC curves showed that the AUCs for miR7, AFP, and DCP in distinguishing HCC patients from the non-HCC individuals were 0.718, 0.682, and 0.642, respectively. The sensitivities were 67.85%, 43.71%, and 44.45%, and the specificities were 75.70%, 92.78%, and 83.91%, respectively. The pairwise comparison of AUCs showed that the diagnostic efficacy of plasma miR7 detection was significantly better than that of AFP or DCP (P<0.05). Although its specificity was slightly lower than AFP and DCP, the sensitivity was significantly higher. Among patients negative for both AFP and DCP, miR7 maintained an AUC of 0.728 for diagnosing very early-stage HCC, with 67.82% sensitivity and 77.73% specificity. Conclusions Plasma miR7 testing is a potential molecular marker with high sensitivity and specificity for the differential diagnosis of small hepatic nodules. In patients with very early-stage HCC lacking effective molecular markers (negative for both AFP and DCP), miR7 can serve as a novel and effective molecular marker to assist diagnosis.
3.Study on the effect and mechanism of Xinyang Tablet on myocardial ferroptosis in mice with chronic heart failure
Jinhua KANG ; Pengpeng LIANG ; Xiaoxiong ZHOU ; Ao LIU ; Zhongqi YANG ; Hongyan WU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):516-528
Objective:
Exploring the effect and mechanism of Xinyang Tablet on reduction of ferroptosis in myocardial cells from mice with chronic heart failure.
Methods:
Sixty C57BL/6J mice were randomly assigned to the sham, model, Xinyang Tablet low-dose (0.34 g/kg), Xinyang Tablet medium-dose (0.68 g/kg), Xinyang Tablet high-dose (1.36 g/kg), and perindopril (0.607 mg/kg) groups using a random number table method (10 mice in each group). Except for the sham group, all other groups underwent aortic arch constriction surgery to construct a chronic heart failure model. On the third day after completion of the modeling, each treatment group was administered the corresponding medication by gavage, while the sham and model groups were administered equal volumes of water by gavage once a day for eight consecutive weeks. After treatment, cardiac ultrasound was used to detect the structure and function of the mouse heart. Hematoxylin and eosin staining was used to detect pathological changes in mouse heart tissue. Masson staining was used to detect the proportion of fibrotic area of mouse heart tissue. Realtime fluorescence PCR was used to detect the mRNA expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), collagen 3α (Col3α), and myosin heavy chain 7 (MYH7) in mouse myocardial tissue. Transmission electron microscope was used to detect the ultrastructure of myocardial cell mitochondria. Reactive oxygen species (ROS) staining was used to detect the mean fluorescence intensity of ROS in myocardial tissue. Micro-determination was used to detect superoxide dismutase (SOD) activity in myocardial tissue. An immunofluorescence assay was used to detect the mean fluorescence intensity of phosphorylated histone deacetylase 2 (p-HDAC2) in myocardial cell. Western blotting was used to detect the protein expression of nuclear factor-erythroid 2-related factor 2 (Nrf2), p-HDAC2, nicotinamide adenine dinucleotide phosphate oxidase 1 (NOX1), glutathione peroxidase 4 (GPX4), and cystine glutamate reverse transporter (xCT) in mouse myocardial tissue.
Results:
Compared to the sham group, the model group showed a decrease in left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS), an increase in left ventricular end-systolic diameter(LVESD) and left ventricular end-diastolic diameter (LVEDD), an increase in the proportion of cardiac fibrosis area, an increase in relative expression levels of ANP, BNP, Col3α, and MYH7 mRNA, an increase in ROS mean fluorescence intensity, a decrease in SOD activity, an increase in mean fluorescence intensity of p-HDAC2, an increase in relative expression levels of p-HDAC2 and NOX1 proteins, and a decrease in relative expression levels of Nrf2, GPX4, and xCT proteins (P<0.05). Myocardial fibrosis lesions are obvious, with disordered mitochondrial arrangement, decreased volume and shrinkage, increased membrane density, and reduced mitochondrial cristae. Compared to the model group, the LVEF and LVFS of mice in each dose group of Xinyang Tablet and the perindopril group increased, LVESD and LVEDD decreased, the proportion of fibrotic area of heart tissue decreased, the relative expression levels of ANP, BNP, Col3α, MYH7 mRNA decreased, ROS mean fluorescence intensity decreased, SOD activity increased, mean fluorescence intensity of p-HDAC2 decreased, relative expression levels of p-HDAC2 and NOX1 proteins decreased, and relative expression levels of Nrf2 and xCT proteins increased (P<0.05). Myocardial fibrosis was reduced, the mitochondrial arrangement was more regular, the mitochondria enlarged, the membrane density was reduced, and mitochondrial cristae increased. Compared to the model group, the relative expression level of the GPX4 protein in myocardial tissue increased in the Xinyang Tablet medium-, high-dose, and the perindopril groups (P<0.05).
Conclusion
Xinyang Tablet can improve ferroptosis and ventricular remodeling in mice with chronic heart failure by regulating the HDAC2-mediated Nrf2 antioxidant pathway.
4.Genetic screening and follow-up results in 3 001 newborns in the Yunnan region.
Ao-Yu LI ; Bao-Sheng ZHU ; Jin-Man ZHANG ; Ying CHAN ; Jun-Yue LIN ; Jie ZHANG ; Xiao-Yan ZHOU ; Hong CHEN ; Su-Yun LI ; Na FENG ; Yin-Hong ZHANG
Chinese Journal of Contemporary Pediatrics 2025;27(6):654-660
OBJECTIVES:
To evaluate the application value of genetic newborn screening (gNBS) in the Yunnan region.
METHODS:
A prospective study was conducted with a random selection of 3 001 newborns born in the Yunnan region from February to December 2021. Traditional newborn screening (tNBS) was used to test biochemical indicators, and targeted next-generation sequencing was employed to screen 159 genes related to 156 diseases. Positive-screened newborns underwent validation and confirmation tests, and confirmed cases received standardized treatment and long-term follow-up.
RESULTS:
Among the 3 001 newborns, 166 (5.53%) were initially positive for genetic screening, and 1 435 (47.82%) were genetic carriers. The top ten genes with the highest variation frequency were GJB2 (21.29%), DUOX2 (7.27%), HBA (6.14%), GALC (3.63%), SLC12A3 (3.33%), HBB (3.03%), G6PD (2.94%), SLC25A13 (2.90%), PAH (2.73%), and UNC13D (2.68%). Among the initially positive newborns from tNBS and gNBS, 33 (1.10%) and 47 (1.57%) cases were confirmed, respectively. A total of 48 (1.60%) cases were confirmed using gNBS+tNBS. The receiver operating characteristic curve analysis demonstrated that the areas under the curve for tNBS, gNBS, and gNBS+tNBS in diagnosing diseases were 0.866, 0.982, and 0.968, respectively (P<0.05). DeLong's test showed that the area under the curve for gNBS and gNBS+tNBS was higher than that for tNBS (P<0.05).
CONCLUSIONS
gNBS can expand the range of disease detection, and its combined use with tNBS can significantly shorten diagnosis time, enabling early intervention and treatment.
Humans
;
Infant, Newborn
;
Neonatal Screening
;
Genetic Testing
;
Female
;
Male
;
Follow-Up Studies
;
Prospective Studies
;
China
5.Design, synthesis and pharmacological evaluation of 1,2,3,4-tetrahydrobenzofuro2,3-cpyridine derivatives as p21-activated kinase 4 inhibitors for treatment of pancreatic cancer.
Yang LI ; Yan FANG ; Xiaoyu CHEN ; Linjiang TONG ; Fang FENG ; Qianqian ZHOU ; Shulun CHEN ; Jian DING ; Hua XIE ; Ao ZHANG
Acta Pharmaceutica Sinica B 2025;15(1):438-466
The p21-activated kinase 4 (PAK4), a key regulator of malignancy, is negatively correlated with immune infiltration and has become an emergent drug target of cancer therapy. Given the lack of high efficacy PAK4 inhibitors, we herein reported the identification of a novel inhibitor 13 bearing a tetrahydrobenzofuro[2,3-c]pyridine tricyclic core and possessing high potency against MIA PaCa-2 and Pan02 cell lines with IC50 values of 0.38 and 0.50 μmol/L, respectively. This compound directly binds to PAK4 in a non-ATP competitive manner. In the mouse Pan02 model, compound 13 exhibited significant tumor growth inhibition at a dose of 100 mg/kg, accompanied by reduced levels of PAK4 and its phosphorylation together with immune infiltration in mice tumor tissue. Overall, compound 13 is a novel allosteric PAK4 inhibitor with a unique tricyclic structural feature and high potency both in vitro and in vivo, thus making it worthy of further exploration.
6.Discovery of a potential hematologic malignancies therapy: Selective and potent HDAC7 PROTAC degrader targeting non-enzymatic function.
Yuheng JIN ; Xuxin QI ; Xiaoli YU ; Xirui CHENG ; Boya CHEN ; Mingfei WU ; Jingyu ZHANG ; Hao YIN ; Yang LU ; Yihui ZHOU ; Ao PANG ; Yushen LIN ; Li JIANG ; Qiuqiu SHI ; Shuangshuang GENG ; Yubo ZHOU ; Xiaojun YAO ; Linjie LI ; Haiting DUAN ; Jinxin CHE ; Ji CAO ; Qiaojun HE ; Xiaowu DONG
Acta Pharmaceutica Sinica B 2025;15(3):1659-1679
HDAC7, a member of class IIa HDACs, plays a pivotal regulatory role in tumor, immune, fibrosis, and angiogenesis, rendering it a potential therapeutic target. Nevertheless, due to the high similarity in the enzyme active sites of class IIa HDACs, inhibitors encounter challenges in discerning differences among them. Furthermore, the substitution of key residue in the active pocket of class IIa HDACs renders them pseudo-enzymes, leading to a limited impact of enzymatic inhibitors on their function. In this study, proteolysis targeting chimera (PROTAC) technology was employed to develop HDAC7 drugs. We developed an exceedingly selective HDAC7 PROTAC degrader B14 which showcased superior inhibitory effects on cell proliferation compared to TMP269 in various diffuse large B cell lymphoma (DLBCL) and acute myeloid leukemia (AML) cells. Subsequent investigations unveiled that B14 disrupts BCL6 forming a transcriptional inhibition complex by degrading HDAC7, thereby exerting proliferative inhibition in DLBCL. Our study broadened the understanding of the non-enzymatic functions of HDAC7 and underscored the importance of HDAC7 in the treatment of hematologic malignancies, particularly in DLBCL and AML.
7.Discovery of toad-derived peptide analogue targeting ARF6 to induce immunogenic cell death for immunotherapy of hepatocellular carcinoma.
Dihui XU ; Xiang LV ; Meng YU ; Ao TAN ; Jiaojiao WANG ; Xinyi TANG ; Mengyuan LI ; Wenyuan WU ; Yuyu ZHU ; Jing ZHOU ; Hongyue MA
Journal of Pharmaceutical Analysis 2025;15(3):101038-101038
Image 1.
8.Peroxisome proliferator activated receptor-α in renal injury: mechanisms and therapeutic implications.
Jing ZHOU ; Li LUO ; Junyu ZHU ; Huaping LIANG ; Shengxiang AO
Chinese Critical Care Medicine 2025;37(7):693-697
Peroxisome proliferator activated receptor-α (PPAR-α) is significantly expressed in various tissues such as the liver, kidney, myocardium, and skeletal muscle, which plays a central role in the development of various diseases by regulating key physiological processes such as energy homeostasis, redox balance, inflammatory response, and ferroptosis. As an important metabolic and excretory organ of the body, renal dysfunction can lead to water and electrolyte imbalance, toxin accumulation, and multiple system complications. The causes of kidney injury are complex and diverse, including acute injury factors (such as ischemia/reperfusion, nephrotoxic drugs, septic shock, and immune glomerulopathy), as well as chronic progressive causes [such as metabolic disease-related nephropathy, hypertensive nephropathy (HN)], and risk factors such as alcohol abuse, obesity, and aging. This review briefly describes the structure, function, and activity regulation mechanism of PPAR-α, systematically elucidates the molecular regulatory network of PPAR-α in the pathological process of kidney injury including acute kidney injury (AKI) such as renal ischemia/reperfusion injury (IRI), drug-induced AKI, sepsis-associated acute kidney injury (SA-AKI), glomerulonephritis, chronic kidney disease (CKD) such as diabetic nephropathy (DN), HN, and other kidney injury, and summarizes the mechanisms related to PPAR-α regulation of kidney injury, including regulation of metabolism, antioxidation, anti-inflammation, anti-fibrosis, and anti-ferroptosis. This review also evaluates PPAR-α's medical value as a novel therapeutic target, and aims to provide theoretical basis for the development of kidney protection strategies based on PPAR-α targeted intervention.
Humans
;
PPAR alpha/metabolism*
;
Acute Kidney Injury/therapy*
;
Animals
;
Kidney/metabolism*
9.Short-term Effects of Fine Particulate Matter and its Constituents on Acute Exacerbations of Chronic Bronchitis: A Time-stratified Case-crossover Study.
Jing Wei ZHANG ; Jian ZHANG ; Peng Fei LI ; Yan Dan XU ; Xue Song ZHOU ; Xiu Li TANG ; Jia QIU ; Zhong Ao DING ; Ming Jia XU ; Chong Jian WANG
Biomedical and Environmental Sciences 2025;38(3):389-393
10.Discovery of proqodine A derivatives with antitumor activity targeting NAD(P)H: quinone oxidoreductase 1 and nicotinamide phosphoribosyltransferase.
Jiangzhou SONG ; Guiqing ZOU ; Zhou ZHAO ; Ya ZHU ; Jiayu XUE ; Lanjia AO ; Huiyong SUN ; Haiping HAO ; Bo ZHANG ; Xiaowei XU
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):75-88
NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.
Humans
;
NAD/metabolism*
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Nicotinamide Phosphoribosyltransferase/metabolism*
;
Cytokines/metabolism*
;
Quinones
;
Oxidoreductases


Result Analysis
Print
Save
E-mail