1.Flavonoid Myricetin as Potent Anticancer Agent: A Possibility towards Development of Potential Anticancer Nutraceuticals.
Anchal TRIVEDI ; Adria HASAN ; Rumana AHMAD ; Sahabjada SIDDIQUI ; Aditi SRIVASTAVA ; Aparna MISRA ; Snober S MIR
Chinese journal of integrative medicine 2024;30(1):75-84
Good nutrition plays a crucial role in maintaining a balanced lifestyle. The beneficial effects of nutrition have been found to counteract nutritional disturbances with the expanded use of nutraceuticals to treat and manage cardiovascular diseases, cancer, and other developmental defects over the last decade. Flavonoids are found abundantly in plant-derived foods such as fruits, vegetables, tea, cocoa, and wine. Fruits and vegetables contain phytochemicals like flavonoids, phenolics, alkaloids, saponins, and terpenoids. Flavonoids can act as anti-inflammatory, anti-allergic, anti-microbial (antibacterial, antifungal, and antiviral) antioxidant, anti-cancer, and anti-diarrheal agents. Flavonoids are also reported to upregulate apoptotic activity in several cancers such as hepatic, pancreatic, breast, esophageal, and colon. Myricetin is a flavonol which is naturally present in fruits and vegetables and has shown possible nutraceutical value. Myricetin has been portrayed as a potent nutraceutical that may protect against cancer. The focus of the present review is to present an updated account of studies demonstrating the anticancer potential of myricetin and the molecular mechanisms involved therein. A better understanding of the molecular mechanism(s) underlying its anticancer activity would eventually help in its development as a novel anticancer nutraceutical having minimal side effects.
Humans
;
Flavonoids/chemistry*
;
Antineoplastic Agents/chemistry*
;
Dietary Supplements
;
Antioxidants/pharmacology*
;
Neoplasms/drug therapy*
2.Structure-activity relationship of Lycium barbarum polysaccharides.
Xiao-Fei LIANG ; Fang ZHANG ; Yin-Xiu JIANG ; Meng-Qiu LIU ; Sheng GUO ; Da-Wei QIAN ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2023;48(9):2387-2395
As a traditional Chinese herb and functional food, the fruits of Lycium barbarum has been widely used for thousands of years in China. L. barbarum polysaccharides(LBPs) are predominant active components, which have immunomodulatory, antioxidant, hypoglycemic, neuroprotective, anti-tumor, and prebiotic activities. The molecular weight, monosaccharide composition, glycosidic bond, branching degree, protein content, chemical modification, and spatial structure of LBPs are closely related to their biological activity. Based on the previous studies of this research team, this paper systematically combed and integrated the research progress of structure, function, and structure-activity relationship of LBPs. At the same time, some problems restricting the clarification of the structure-activity relationship of LBPs were considered and prospected, hoping to provide references for the high value utilization of LBPs and in-depth exploration of their health value.
Lycium/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Structure-Activity Relationship
;
Antioxidants/pharmacology*
;
Antineoplastic Agents
;
Polysaccharides/chemistry*
3.Toxicity attenuation processing technology and mechanism of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction.
Bing-Yin LI ; Jun-Ming WANG ; Ling-Ling SONG ; Ya-Qian DUAN ; Bing-Yu LONG ; Ling-Yu QIN ; Xiao-Hui WU ; Yan-Mei WANG ; Ming-Zhu GONG
China Journal of Chinese Materia Medica 2023;48(9):2455-2463
This study explored toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction for the first time, and further explored its detoxification mechanism. Nine processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction were prepared by orthogonal experiment with three factors and three levels. Based on the decrease in the content of the main hepatotoxic component diosbulbin B before and after processing of Rhizoma Dioscoreae Bulbiferae by high-performance liquid chromatography, the toxicity attenuation technology was preliminarily screened out. On this basis, the raw and representative processed products of Rhizoma Dioscoreae Bulbiferae were given to mice by gavage with 2 g·kg~(-1)(equival to clinical equivalent dose) for 21 d. The serum and liver tissues were collected after the last administration for 24 h. The serum biochemical indexes reflecting liver function and liver histopathology were combined to further screen out and verify the proces-sing technology. Then, the lipid peroxidation and antioxidant indexes of liver tissue were detected by kit method, and the expressions of NADPH quinone oxidoreductase 1(NQO1) and glutamate-cysteine ligase(GCLM) in mice liver were detected by Western blot to further explore detoxification mechanism. The results showed that the processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reduced the content of diosbulbin B and improved the liver injury induced by Rhizoma Dioscoreae Bul-biferae to varying degrees, and the processing technology of A_2B_2C_3 reduced the excessive levels of alanine transaminase(ALT) and aspartate transaminase(AST) induced by raw Rhizoma Dioscoreae Bulbiferae by 50.2% and 42.4%, respectively(P<0.01, P<0.01). The processed products of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction reversed the decrease protein expression levels of NQO1 and GCLM in the liver of mice induced by raw Rhizoma Dioscoreae Bulbiferae to varying degrees(P<0.05 or P<0.01), and it also reversed the increasing level of malondialdehyde(MDA) and the decreasing levels of glutathione(GSH), glutathione peroxidase(GPX), and glutathione S-transferase(GST) in the liver of mice(P<0.05 or P<0.01). In summary, this study shows that the optimal toxicity attenuation processing technology of Rhizoma Dioscoreae Bulbiferae stir-fried with Paeoniae Radix Alba decoction is A_2B_2C_3, that is, 10% of Paeoniae Radix Alba decoction is used for moistening Rhizoma Dioscoreae Bulbiferae and processed at 130 ℃ for 11 min. The detoxification mechanism involves enhancing the expression levels of NQO1 and GCLM antio-xidant proteins and related antioxidant enzymes in the liver.
Mice
;
Animals
;
Antioxidants/analysis*
;
Plant Extracts/pharmacology*
;
Drugs, Chinese Herbal/chemistry*
;
Rhizome/chemistry*
;
Paeonia/chemistry*
;
Glutathione/analysis*
4.Relationship between immune regulation and structure of polysaccharides.
Nuo CHEN ; Wen-Jie XI ; Mei-Fen HU ; Xing-Ye WEI ; Ping XIAO ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2023;48(10):2667-2678
Polysaccharides have significant immunomodulatory activity and have good development value in food and medicine fields. At present, there are many studies on the chemical structure and immune activity of polysaccharides, but the relationship between them of polysaccharides has not been fully explained, which limits the further development and utilization of polysaccharide resources. The immune activity of polysaccharides is closely related to their own structure. This paper systematically summarized the relationship between the relative molecular weight, monosaccharide composition, glycosidic bond types, chemical modification, and advanced conformation of polysaccharides and the immune regulation, aiming to provide references for the profound study of polysaccharide structure-activity relationship and utilization of polysaccharides.
Monosaccharides/chemistry*
;
Structure-Activity Relationship
;
Molecular Weight
;
Antioxidants/pharmacology*
;
Polysaccharides/chemistry*
5.Chemical constituents of roots of Rodgersia aesculifolia.
Ling-Ling CHU ; Xu-Dong ZHOU ; Jia WU ; Gang FU ; Shi-Yu XIAO ; Ping-An LIU ; Bin LI ; Wei WANG
China Journal of Chinese Materia Medica 2023;48(10):2767-2780
The chemical compositions of Rodgersia aesculifolia were isolated and purified using a combination of silica gel, reverse phase silica gel, Sephadex LH-20 column chromatography, and semi-preparative HPLC. The structures were determined according to the physicochemical properties and spectroscopic data. The MTT method and the ABTS kit were used to measure the cytotoxicity and antioxidant capacity of all isolates, respectively. Thirty-four compounds were isolated from R. aesculifolia and elucidated as stigmastane-6β-methoxy-3β,5α-diol(1), stigmastane-3β,5α,6β triol(2), β-sitosterol(3), β-daucosterol(4), stigmast-4-en-3-one(5), bergenin(6), 11-β-D-glucopyranosyl-bergenin(7), 11-O-galloybergenin(8), 1,4,6-tri-O-galloyl-β-D-glucose(9), gallic acid(10), 3,4-dihydroxybenzoic acid methyl ester(11), ethyl gallate(12), ethyl 3,4-dihydroxybenzoate(13), caffeic acid ethyl ester(14), p-hydroxybenzeneacetic acid(15), 4-hydroxybenzoic acid(16), 2,3-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-propan-1-one(17), 3,7-dimethyl-2-octene-1,7-diol(18), crocusatin-B(19), neroplomacrol(20), geniposide(21), 3-hydroxyurs-12-en-27-oic acid(22), 3β-trans-p-coumaroyloxy-olean-12-en-27-oic acid(23), aceriphyllic acid G(24), isolariciresinol(25), trans-rodgersinine B(26), cis-rodgersinine A(27), neo-olivil(28),(7S,8R)-dihydro-3'-hydroxy-8-hydroxy-methyl-7-(4-hydroxy-3-methoxy phenyl)-1'-benzofuranpropanol(29), 5,3',4'-trihydroxy-7-methoxyflavanone(30), quercetin 3-rutinoside(31), catechin-[8,7-e]-4β-(3,4-dihydroxy-phenyl)-dihydro-2(3H)-pyranone(32), ethyl α-L-arabino-furanoside(33), and l-linoleoylglycerol(34). One new compound was discovered(compound 1), 25 compounds were first isolated from R. aesculifolia, and 22 compounds were first isolated from the Rodgersia plant. The results indicated that compounds 22-24 possessed cytotoxicity for HepG2, MCF-7, HCT-116, BGC-823, and RAFLS cell lines(IC_(50) ranged from 5.89 μmol·L~(-1) to 20.5 μmol·L~(-1)). Compounds 8-14 and 30-32 showed good antioxidant capacity, and compound 9 showed the strongest antioxidant activity with IC_(50) of(2.00±0.12) μmol·L~(-1).
Antioxidants/analysis*
;
Silica Gel/analysis*
;
Plant Roots/chemistry*
6.Anti-inflammatory material basis and mechanism of Artemisia stolonifera based on UPLC-Q-TOF-MS combined with network pharmacology and molecular docking.
Le CHEN ; Yun-Yun ZHU ; Li-Ping KANG ; Chao-Wei GUO ; Yu-Qiao WANG ; Shuang-Ge LI ; Hong-Zhi DU ; Da-Hui LIU
China Journal of Chinese Materia Medica 2023;48(14):3701-3714
This study aimed to explore the anti-inflammatory material basis and molecular mechanism of Artemisia stolonifera based on the analysis of the chemical components in different extracted fractions of A. stolonifera and their antioxidant and anti-inflammatory effects in combination with network pharmacology and molecular docking. Thirty-two chemical components were identified from A. stolonifera by ultra-performance liquid chromatography coupled to tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Among them, there were 7, 21 and 22 compounds in water, n-butanol and ethyl acetate fractions, respectively. The antio-xidant capacity of different extracted fractions was evaluated by measuring their scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) free radicals and total antioxidant capacity [ferric reducing antioxidant power(FRAP) assay]. The inflammatory model of RAW264.7 cells was induced by lipopolysaccharide(LPS), and the levels of nitrite oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) in the supernatant and the mRNA expression of related inflammatory factors in cells were used to evaluate the anti-inflammatory effects. The results revealed that ethyl acetate fraction of A. stolonifera was the optimal antioxidant and anti-inflammatory fraction. By network pharmacology, it was found that flavonoids such as rhamnazin, eupatilin, jaceosidin, luteolin and nepetin could act on key targets such as TNF, serine/threonine protein kinase 1(AKT1), tumor protein p53(TP53), caspase-3(CASP3) and epidermal growth factor receptor(EGFR), and regulate the phosphatidylinositol-3-kinase-protein kinase B(PI3K-AKT) and mitogen-activated protein kinase(MAPK) signaling pathways to exert the anti-inflammatory effects. Molecular docking further indicated excellent binding properties between the above core components and core targets. This study preliminarily clarified the anti-inflammatory material basis and mechanism of ethyl acetate fraction of A. stolonifera, providing a basis for the follow-up clinical application of A. stolonifera and drug development.
Antioxidants/chemistry*
;
Molecular Docking Simulation
;
Artemisia
;
Network Pharmacology
;
Phosphatidylinositol 3-Kinases
;
Anti-Inflammatory Agents/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Interleukin-6
7.Research progress on vesicles from Chinese medicinal herbs.
Junyan LI ; Wenping WANG ; Yi ZHANG ; Zhizhong YANG
Journal of Zhejiang University. Medical sciences 2023;52(3):349-360
Vesicles derived from Chinese medicinal herbs (VCMH) are nano-vesicular entities released by the cells of Chinese medicinal herbs. VCMHs have various biological effects and targeting characteristics, and their component chemicals and functional activities are closely related to the parent plant. VCMH differs from animal-derived vesicles in three ways: stability, specificity, and safety. There are a number of extraction and isolation techniques for VCMH, each with their own benefits and drawbacks, and there is no unified standard. When two or more approaches are used, high quantities of intact vesicles can be obtained more quickly and efficiently. The obtained VCMHs were systematically examined and evaluated. Firstly, they are generally saucer-shaped, cup-shaped or sphere, with particle size of 10-300 nm. Secondly, they contain lipids, proteins, nucleic acids and other active substances, and these components are an important part for intercellular information transfer. Finally, they mostly have good biocompatibility and low toxicity, with anti-inflammatory, antioxidant, anti-tumor and anti-fibrotic effects. As a new drug carrier, VCMHs have outstanding active targeting capabilities, and the capsule form can effectively preserve the drugs, considerably enhancing drug delivery efficiency and stability in vitro and in vivo. The modification of its vesicular structure by suitable physical or chemical means can further create more stable and precise drug carriers. This article reviews the extraction and purification techniques, activity evaluation and application of VCMH to provide information for further research and application of new active substances and targeted drug carriers.
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Plants, Medicinal
;
Antioxidants
;
Anti-Inflammatory Agents
;
Drug Carriers
8.Therapeutic Application, Phytoactives and Pharmacology of Tinospora cordifolia: An Evocative Review.
Rabiya AHSAN ; Anuradha MISHRA ; Badruddeen BADAR ; Mohammad OWAIS ; Vijayshwari MISHRA
Chinese journal of integrative medicine 2023;29(6):549-555
Tinospora cordifolia (Guduchi or Gurjo), a herbaceous vine or climbing deciduous shrub, is consider as an important medicine in the Ayurvedic system of medication, which is available in India, China, Myanmar, Bangladesh and Srilanka. Menispermaceae is the family of this compound. T. cordifolia have a variety of properties to treat various ailments such as fevers, jaundice, diabetes, dysentery, urinary infections, and skin diseases. This compound has been subjected to many chemicals, pharmacological, pre-clinical, or clinical investigations and some new therapeutic potential effects have been indicated. This review aims to summarize the critical information concerning in areas of chemical constituents, chemical structure, and pharmacokinetic activities such as anti-diabetic, anticancer, immune-modulatory, antivirus (especially in silico study about COVID-19), antioxidant, antimicrobial, hepatoprotective and its effect on cardiovascular and neurological disorders as well as rheumatoid arthritis. This traditional herb needs more experimental study on the clinical, pre-clinical study, and clinical efficacy of these compounds for the prevention and treatment of COVID-19 and needs large-scale clinical studies to prove the clinical efficacy of this compound, especially in stress-related diseases and other neuronal disorders.
Humans
;
Tinospora/chemistry*
;
COVID-19
;
Plant Extracts/chemistry*
;
Antioxidants/chemistry*
9.Lyciumbarbarum polysaccharides ameliorate canine acute liver injury by reducing oxidative stress, protecting mitochondrial function, and regulating metabolic pathways.
Jianjia HUANG ; Yuman BAI ; Wenting XIE ; Rongmei WANG ; Wenyue QIU ; Shuilian ZHOU ; Zhaoxin TANG ; Jianzhao LIAO ; Rongsheng SU
Journal of Zhejiang University. Science. B 2023;24(2):157-171
The development of acute liver injury can result in liver cirrhosis, liver failure, and even liver cancer, yet there is currently no effective therapy for it. The purpose of this study was to investigate the protective effect and therapeutic mechanism of Lyciumbarbarum polysaccharides (LBPs) on acute liver injury induced by carbon tetrachloride (CCl4). To create a model of acute liver injury, experimental canines received an intraperitoneal injection of 1 mL/kg of CCl4 solution. The experimental canines in the therapy group were then fed LBPs (20 mg/kg). CCl4-induced liver structural damage, excessive fibrosis, and reduced mitochondrial density were all improved by LBPs, according to microstructure data. By suppressing Kelch-like epichlorohydrin (ECH)-associated protein 1 (Keap1), promoting the production of sequestosome 1 (SQSTM1)/p62, nuclear factor erythroid 2-related factor 2 (Nrf2), and phase II detoxification genes and proteins downstream of Nrf2, and restoring the activity of anti-oxidant enzymes like catalase (CAT), LBPs can restore and increase the antioxidant capacity of liver. To lessen mitochondrial damage, LBPs can also enhance mitochondrial respiration, raise tissue adenosine triphosphate (ATP) levels, and reactivate the respiratory chain complexes I‒V. According to serum metabolomics, the therapeutic impact of LBPs on acute liver damage is accomplished mostly by controlling the pathways to lipid metabolism. 9-Hydroxyoctadecadienoic acid (9-HODE), lysophosphatidylcholine (LysoPC/LPC), and phosphatidylethanolamine (PE) may be potential indicators of acute liver injury. This study confirmed that LBPs, an effective hepatoprotective drug, may cure acute liver injury by lowering oxidative stress, repairing mitochondrial damage, and regulating metabolic pathways.
Animals
;
Dogs
;
Antioxidants/metabolism*
;
Carbon Tetrachloride
;
Chemical and Drug Induced Liver Injury/drug therapy*
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Liver
;
Metabolic Networks and Pathways
;
Mitochondria/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
Polysaccharides/pharmacology*
;
Lycium/chemistry*
10.Five new spirosterol saponins from Allii Macrostemonis Bulbus.
Rong WANG ; Lulu WANG ; Manli ZHANG ; Yadi GUO ; Jing ZHANG ; Guoxu MA
Chinese Journal of Natural Medicines (English Ed.) 2023;21(3):226-232
Five new spirostanol saponins (1-5) and seven known compounds (6-12) were isolated from the n-butanol fraction of 75% ethanol extract of Allii Macrostemonis Bulbus. The identification and structural elucidation of all the isolates were performed through extensive 1D and 2D NMR experiments, HR-ESI-MS data analysis and comparisons with literature values. Antioxidant evaluation showed that compounds 6-11 exhibited certain scavenging effects on ABTS radical, where compounds 6, 7 and 11 had IC50 values of 0.208, 0.057 and 0.014 mg·mL-1, respectively.
Saponins/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Magnetic Resonance Spectroscopy
;
Antioxidants/pharmacology*
;
Molecular Structure

Result Analysis
Print
Save
E-mail