1.Flavonoid Myricetin as Potent Anticancer Agent: A Possibility towards Development of Potential Anticancer Nutraceuticals.
Anchal TRIVEDI ; Adria HASAN ; Rumana AHMAD ; Sahabjada SIDDIQUI ; Aditi SRIVASTAVA ; Aparna MISRA ; Snober S MIR
Chinese journal of integrative medicine 2024;30(1):75-84
Good nutrition plays a crucial role in maintaining a balanced lifestyle. The beneficial effects of nutrition have been found to counteract nutritional disturbances with the expanded use of nutraceuticals to treat and manage cardiovascular diseases, cancer, and other developmental defects over the last decade. Flavonoids are found abundantly in plant-derived foods such as fruits, vegetables, tea, cocoa, and wine. Fruits and vegetables contain phytochemicals like flavonoids, phenolics, alkaloids, saponins, and terpenoids. Flavonoids can act as anti-inflammatory, anti-allergic, anti-microbial (antibacterial, antifungal, and antiviral) antioxidant, anti-cancer, and anti-diarrheal agents. Flavonoids are also reported to upregulate apoptotic activity in several cancers such as hepatic, pancreatic, breast, esophageal, and colon. Myricetin is a flavonol which is naturally present in fruits and vegetables and has shown possible nutraceutical value. Myricetin has been portrayed as a potent nutraceutical that may protect against cancer. The focus of the present review is to present an updated account of studies demonstrating the anticancer potential of myricetin and the molecular mechanisms involved therein. A better understanding of the molecular mechanism(s) underlying its anticancer activity would eventually help in its development as a novel anticancer nutraceutical having minimal side effects.
Humans
;
Flavonoids/chemistry*
;
Antineoplastic Agents/chemistry*
;
Dietary Supplements
;
Antioxidants/pharmacology*
;
Neoplasms/drug therapy*
2.Polysaccharides from Chinese herbal medicine: a review on the hepatoprotective and molecular mechanism.
Jifeng LI ; Haolin GUO ; Ying DONG ; Shuo YUAN ; Xiaotong WEI ; Yuxin ZHANG ; Lu DONG ; Fei WANG ; Ting BAI ; Yong YANG
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):4-14
Polysaccharides, predominantly extracted from traditional Chinese medicinal herbs such as Lycium barbarum, Angelica sinensis, Astragalus membranaceus, Dendrobium officinale, Ganoderma lucidum, and Poria cocos, represent principal bioactive constituents extensively utilized in Chinese medicine. These compounds have demonstrated significant anti-inflammatory capabilities, especially anti-liver injury activities, while exhibiting minimal adverse effects. This review summarized recent studies to elucidate the hepatoprotective efficacy and underlying molecular mechanisms of these herbal polysaccharides. It underscored the role of these polysaccharides in regulating hepatic function, enhancing immunological responses, and improving antioxidant capacities, thus contributing to the attenuation of hepatocyte apoptosis and liver protection. Analyses of molecular pathways in these studies revealed the intricate and indispensable functions of traditional Chinese herbal polysaccharides in liver injury management. Therefore, this review provides a thorough examination of the hepatoprotective attributes and molecular mechanisms of these medicinal polysaccharides, thereby offering valuable insights for the advancement of polysaccharide-based therapeutic research and their potential clinical applications in liver disease treatment.
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Liver Diseases/drug therapy*
;
Antioxidants
;
Polysaccharides/therapeutic use*
;
Medicine, Chinese Traditional
3.Carica papaya flower extracts possess antioxidant and 5α-reductase inhibitory activities
Richelle Ann M. Manalo-Cabalinan ; Gerwin Louis T. Dela Torre ; Angelina A. Atienza ; Erna C. Arollado
Acta Medica Philippina 2024;58(19):83-92
OBJECTIVES
Carica papaya has been widely used commercially for skin care due to its therapeutic benefits. The potential of its flower to promote hair growth has been traditionally recognized in other countries but not in the Philippines. In this study, we explored the effect of various extracts of C. papaya flower in the biological activities associated with hair loss, including 5α-reductase inhibition and antioxidation, as well as identified the putative compounds present in the most potent extract.
METHODSThe flowers of C. papaya were macerated separately with ethanol, ethyl acetate, and hexane to obtain their corresponding crude extracts. These extracts were subjected to antioxidant tests via 2,2′-diphenyl-1-picrylhydrazyl (DPPH), and ferric-reducing antioxidant power (FRAP) assays. The total phenolic and flavonoid contents (TPC and TFC) of the crude extracts were determined, as well as the ability of the extracts to inhibit 5α-reductase. The compounds present in the most potent extract were determined using ultraperformance liquid chromatography quadrupole time of flight mass spectrometer (UPLC/MS-QToF).
RESULTSEthyl acetate extract displayed significantly higher DPPH activity (0.001755 ± 0.00092 ascorbic acid equivalent antioxidant capacity) and 5α-reductase inhibitory activity (115.18 ± 11.61 mg dutasteride/g) compared to ethanol (DPPH: p=0.0121; 5α-reductase: p=0.0016) and hexane (DPPH: p=0.0038; 5α-reductase: p < 0.0001) extracts. Similarly, ethyl acetate extract gave the highest FRAP (0.4842 ± 0.0936 mg ascorbic acid/g) activity, TFC (0.0403 mg quercetin/g), and TPC (0.0463 mg gallic acid/g) among the extracts. Forty-nine compounds were annotated in the ethyl acetate extract, with seven (7) putatively identified as fatty acids (9-hydroxy-10,12-pentadecadienoic acid, 9,12,15-octadecatrienoic acid), hydroxyflavone (5-methylkaempferol), alkaloid (allomatrine), dipeptide derivative (aurantiamide acetate), bufotalinin, and 6β-acetoxy-5-epilimonin based on the Traditional Chinese Medicine Library.
CONCLUSIONThese results suggest that local C. papaya flowers can be a source of hair growth-promoting agents via their antioxidant and 5α-reductase inhibitory potential.
Carica ; Papaya ; Antioxidants ; Free Fatty Acids ; Fatty Acids, Nonesterified
4.Mechanism of nephrotoxicity induced by chronic exposure of bisphenol A in mice based on oxidative stress and cell apoptosis.
Zhongwei TANG ; Huimin WANG ; Zhuo ZHANG ; Yanbiao KONG ; Xuepei LEI ; Jianqin YUAN
Chinese Journal of Biotechnology 2023;39(1):372-385
Bisphenol A (BPA) is widely used to produce epoxy resin and polycarbonate plastic products. In severe cases, these plastics may release BPA, which then infiltrates into the environment. Various concentrations of BPA have been found in most biological fluid. Its presence has been well shown to be closely related to many chronic diseases, including chronic kidney disease (CKD). However, little is known regarding the adverse effects of BPA exposure and its succedent cellular events on CKD. Hence, in the current in vivo study, we aimed to assess the effects of chronic exposure to BPA on animal nephrotoxicity through investigating oxidative stress and apoptosis. Upon exposure to BPA at 0.01, 0.1, and 1 mg/L via drinking water for four weeks, the mated and pregnant females were continuously exposed to BPA until weaning. Subsequently, three weeks old F1-male neonates were also orally challenged with the same three doses of BPA for ten weeks. The results showed that the kidneys of 0.1 and 1 mg/L BPA-treated mice were seriously damaged; the contents of serum renal function indexes and lipid peroxidation products were significantly increased, including urea nitrogen, creatinine, uric acid, and thiobarbituric acid reactive substances; the morphological structure of mouse kidneys was impaired; the expressions of antioxidant-related genes at mRNA and protein levels from mouse kidneys were markedly diminished, including glutathione-S-transferase, superoxide dismutase, and catalase; the expressions of genes and proteins related to apoptosis index (ratio of Bax/Bcl-1 and Caspase-3) were significantly enhanced. The data manifested that cumulative oxidative stress and apoptosis might play an essential role in the animal nephrotoxicity induced by chronic exposure to BPA.
Female
;
Male
;
Mice
;
Animals
;
Oxidative Stress
;
Antioxidants
;
Apoptosis
;
Renal Insufficiency, Chronic
5.Phenylpropanoid pathway in plants and its role in response to heavy metal stress: a review.
Wenjia GE ; Jianpan XIN ; Runan TIAN
Chinese Journal of Biotechnology 2023;39(2):425-445
Phenylpropanoid metabolic pathway is one of the most important secondary metabolic pathways in plants. It directly or indirectly plays an antioxidant role in plant resistance to heavy metal stress, and can improve the absorption and stress tolerance of plants to heavy metal ions. In this paper, the core reactions and key enzymes of the phenylpropanoid metabolic pathway were summarized, and the biosynthetic processes of key metabolites such as lignin, flavonoids and proanthocyanidins and relevant mechanisms were analyzed. Based on this, the mechanisms of key products of phenylpropanoid metabolic pathway in response to heavy metal stress were discussed. The perspectives on the involvement of phenylpropanoid metabolism in plant defense against heavy metal stress provides a theoretical basis for improving the phytoremediation efficiency of heavy metal polluted environment.
Plants/metabolism*
;
Metals, Heavy/metabolism*
;
Flavonoids/metabolism*
;
Biodegradation, Environmental
;
Antioxidants
6.Physiological regulation of salicylic acid on Helianthus tubeuosus upon copper stress and root FTIR analysis.
Jinxiang AI ; Jieke GE ; Ziyi ZHANG ; Wenqian CHEN ; Jiayi LIANG ; Xinyi WANG ; Qiaoyuan WU ; Jie YU ; Yitong YE ; Tianyi ZHOU ; Jinyi SU ; Wenwen LI ; Yuhuan WU ; Peng LIU
Chinese Journal of Biotechnology 2023;39(2):695-712
Phytoremediation plays an important role in the treatment of heavy metal pollution in soil. In order to elucidate the mechanism of salicylic acid (SA) on copper absorption, seedlings from Xuzhou (with strong Cu-tolerance) and Weifang Helianthus tuberosus cultivars (with weak Cu-tolerance) were selected for pot culture experiments. 1 mmol/L SA was sprayed upon 300 mg/kg soil copper stress, and the photosynthesis, leaf antioxidant system, several essential mineral nutrients and the changes of root upon copper stress were analyzed to explore the mechanism of copper resistance. The results showed that Pn, Tr, Gs and Ci upon copper stress decreased significantly compared to the control group. Meanwhile, chlorophyll a, chlorophyll b and carotenoid decreased with significant increase in initial fluorescence (F0), maximum photochemical quantum yield of PSⅡ (Fv/Fm), electron transfer rate (ETR) and photochemical quenching coefficient (qP) content all decreased. The ascorbic acid (AsA) content was decreased, the glutathione (GSH) value was increased, the superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activity in the leaves were decreased, and the peroxidase (POD) activity was significantly increased. SA increased the Cu content in the ground and root system, and weakened the nutrient uptake capacity of K, Ca, Mg, and Zn in the root stem and leaves. Spray of exogenous SA can maintain the opening of leaf stomata, improve the adverse effect of copper on photosynthetic pigment and PSⅡ reaction center. Mediating the SOD and APX activity started the AsA-GSH cycle process, effectively regulated the antioxidant enzyme system in chrysanthemum taro, significantly reduced the copper content of all parts of the plant, and improved the ion exchange capacity in the body. External SA increased the content of the negative electric group on the root by changing the proportion of components in the root, promoted the absorption of mineral nutrient elements and the accumulation of osmoregulatory substances, strengthened the fixation effect of the root on metal copper, and avoided its massive accumulation in the H. tuberosus body, so as to alleviate the inhibitory effect of copper on plant growth. The study revealed the physiological regulation of SA upon copper stress, and provided a theoretical basis for planting H. tuberosus to repair soil copper pollution.
Antioxidants
;
Copper
;
Helianthus/metabolism*
;
Salicylic Acid/pharmacology*
;
Chlorophyll A/pharmacology*
;
Spectroscopy, Fourier Transform Infrared
;
Chlorophyll/pharmacology*
;
Ascorbic Acid
;
Superoxide Dismutase/metabolism*
;
Photosynthesis
;
Glutathione
;
Plant Leaves
;
Stress, Physiological
;
Seedlings
7.A new lignan glucoside from stems and branches of Rhododendron ovatum.
China Journal of Chinese Materia Medica 2023;48(2):415-420
Ten lignans were isolated from the ethanol extract of stems and branches of Rhododendron ovatum through column chromatography over silica gel, ODS, Sephadex LH-20, and MCI-gel resin and semi-preparative RP-HPLC. The structures of all compounds were elucidated by extensive spectroscopic data analysis(UV, IR, HR-ESI-MS, ECD and NMR) as(-)-4-epi-lyoniresinol-9'-O-α-L-rhamnopyranoside(1),(+)-lyoniresinol-3α-O-α-L-rhamnopyranoside(2),(+)-5'-methoxyisolariciresinol-9'-O-α-L-rhamnopyranoside(3),(-)-lyoniresinol-3α-O-β-D-glucopyranoside(4),(+)-lyoniresinol-3α-O-β-D-glucopyranoside(5),(-)-4-epi-lyoniresinol-9'-O-β-D-glucopyransoide(6), racemiside(7), neociwujiaphenol(8),(+)-syringaresinol(9), and homohesperitin(10). Among them, compound 1 was a new aryltetralin-type lignan. All the isolated lignans were tested for antioxidant activities in Fe~(2+)-cysteine induced rat liver microsomal lipid peroxidation in vitro, and compounds 8 and 9 showed antioxidant activities on the formation of malondiadehyde(MDA) in rat liver microsomes at 1×10~(-5) mol·L~(-1), with significant inhibitory rates of 75.20% and 91.12%, respectively.
Animals
;
Rats
;
Glucosides/chemistry*
;
Rhododendron
;
Antioxidants/pharmacology*
;
Lignans/chemistry*
;
Plant Stems
8.Effects of different extraction methods on chemical compositions and biological activities of polysaccharides from Lycium barbarum.
Qing-Yong ZAI ; Hua-Guo CHEN ; Wen XIE ; Xin ZHOU
China Journal of Chinese Materia Medica 2023;48(1):60-70
In this study, five polysaccharides from Lycium barbarum(LBPs)(LBP-1-LBP-5) were selectively extracted by different extraction methods, and the chemical composition, structural characteristics, and biological activities of LBPs were explored. The results of chemical composition analysis showed that alkaloids were not detected in the five LBPs. The total polysaccharide content was(81.95%±1.6%)-(92.96%±0.76%), the uronic acid content was(8.26%±0.46%)-(24.81%±0.46%), and the protein content was(0.06%±0.03%)-(1.35%±0.13%). The monosaccharide compositions of the five LBPs were basically same, mainly including glucose, xylose, and galactose. However, there was significant difference in the content ratio of different monosaccharide. The results of infrared spectra analysis indicated that the five LBPs had typical infrared spectral characteristics of polysaccharides. The results of nuclear magnetic resonance characteristic spectrum analysis revealed that the five LBPs had two configurations of α and β. Meanwhile, there were triple helix structures in LBP-2, LBP-3, and LBP-4, which enhanced the activities of polysaccharides. The results of activities screening suggested that the biological activities of the five LBPs were significantly different. LBP-3 showed the highest lipid oxidation clearance rate, and its antioxidant activity was equivalent to that of the positive control group. The inhibitory rate of LBP-4 on α-amylase and its activation rate of alcohol dehydrogenase were better than those of other fractions, and the inhibitory rate of LBP-4 on α-amylase was slightly higher than that of the positive control group when the mass concentration was 10 g·L~(-1). LBP-2 showed stronger inhibitory activity against α-glucosidase and hyaluronidase. This study provides references for the precise development and utilization of LBPs.
Drugs, Chinese Herbal/chemistry*
;
Lycium/chemistry*
;
Antioxidants/pharmacology*
;
Polysaccharides/chemistry*
;
Monosaccharides
9.Anti-hyperuricemia activity and its mechanism of flavonoid extract from saffron floral bio-residues.
Na CHEN ; Hua LI ; Jing MENG ; Yi-Fei YANG ; Bin YANG
China Journal of Chinese Materia Medica 2023;48(1):148-159
A hyperuricemic rat model induced by adenine and ethambutol was established to investigate the anti-hyperuricemia activity and its mechanism of the flavonoid extract from saffron floral bio-residues. Sixty-seven SD rats were randomly divided into control group, model group, positive control group, and flavonoid extract groups(with 3 doses), respectively, and each group contained 11 or 12 rats. The hyperuricemic model was established by continuous oral administration of adenine(100 mg·kg~(-1)) and ethambutol(250 mg·kg~(-1)) for 7 days. At the same time, the positive control group was given allopurinol(20 mg·kg~(-1) per day) and the flavonoid extract groups were given the flavonoid extract at doses of 340, 170 and 85 mg·kg~(-1) per day, respectively. On day 8, rat serum, liver, kidney, and intestinal tissues were collected, and the levels of uric acid in serum and tissue, the xanthine oxidase activities and antioxi-dant activities in serum and liver were evaluated, and the kidney histopathology was explored. In addition, an untargeted serum metabolomics study was performed. According to the results, the flavonoid extract effectively reduced the uric acid levels in serum, kidney and ileum and inhibited the xanthine oxidase activities and elevated the antioxidant activities of serum and liver in hyperuricemic rat. At the same time, it reduced the levels of inflammation factors in kidney and protected renal function. Moreover, 68 differential metabolites of hyperuricemic rats were screened and most of which were lipids and amino acids. The flavonoid extract significantly retrieved the levels of differential metabolites in hyperuricemic rats, such as SM(d18:1/20:0), PC[18:0/18:2(92,12Z)], palmitic acid and citrulline, possibly through the following three pathways, i.e., arginine biosynthesis, glycine, serine and threonine metabolism, and histidine metabolism. To sum up, the flavonoid extract of saffron floral bio-residues lowered the uric acid level, increased the antioxidant activity, and alleviated inflammatory symptoms of hyperuricemic rats, which may be related to its inhibition of xanthine oxidase activity and regulation of serum lipids and amino acids metabolism.
Rats
;
Animals
;
Flavonoids/pharmacology*
;
Uric Acid
;
Crocus
;
Xanthine Oxidase
;
Ethambutol/adverse effects*
;
Rats, Sprague-Dawley
;
Hyperuricemia/drug therapy*
;
Kidney
;
Antioxidants/pharmacology*
;
Plant Extracts/adverse effects*
;
Amino Acids
;
Adenine/adverse effects*
;
Lipids
10.Effects of propiconazole on physiological and biochemical properties of Panax notoginseng and dietary risk assessment.
Zi-Xiu ZHENG ; Li-Sha QIU ; Kai ZHENG ; Lan-Ping GUO ; Xiu-Ming CUI ; Hong-Juan NIAN ; Ying-Cai LI ; Shao-Jun HUANG ; Ye YANG
China Journal of Chinese Materia Medica 2023;48(5):1203-1211
To study the residue and dietary risk of propiconazole in Panax notoginseng and the effects on physiological and bioche-mical properties of P. notoginseng, we conducted foliar spraying of propiconazole on P. notoginseng in pot experiments. The physiolo-gical and biochemical properties studied included leaf damage, osmoregulatory substance content, antioxidant enzyme system, non-enzymatic system, and saponin content in the main root. The results showed that at the same application concentration, the residual amount of propiconazole in each part of P. notoginseng increased with the increase in the times of application and decreased with the extension of harvest interval. After one-time application of propiconazole according to the recommended dose(132 g·hm~(-2)) for P. ginseng, the half-life was 11.37-13.67 days. After 1-2 times of application in P. notoginseng, propiconazole had a low risk of dietary intake and safety threat to the population. The propiconazole treatment at the recommended concentration and above significantly increased the malondialdehyde(MDA) content, relative conductivity, and osmoregulatory substances and caused the accumulation of reactive oxygen species in P. notoginseng leaves. The propiconazole treatment at half(66 g·hm~(-2)) of the recommended dose for P. ginseng significantly increased the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in P. notoginseng leaves. The propiconazole treatment at 132 g·hm~(-2) above inhibited the activities of glutathione reductase(GR) and glutathione S-transferase(GST), thereby reducing glutathione(GSH) content. Proconazole treatment changed the proportion of 5 main saponins in the main root of P. notoginseng. The treatment with 66 g·hm~(-2) propiconazole promoted the accumulation of saponins, while that with 132 g·hm~(-2) and above propiconazole significantly inhibited the accumulation of saponins. In summary, using propiconazole at 132 g·hm~(-2) to prevent and treat P. notoginseng diseases will cause stress on P. notoginseng, while propiconazole treatment at 66 g·hm~(-2) will not cause stress on P. notoginseng but promote the accumulation of saponins. The effect of propiconazole on P. notoginseng diseases remains to be studied.
Panax notoginseng/chemistry*
;
Panax
;
Antioxidants/pharmacology*
;
Saponins/pharmacology*
;
Glutathione
;
Risk Assessment


Result Analysis
Print
Save
E-mail