1.Research Advance of BCR-ABL Mutation and the Efficacy of Second and Third Generation TKI in Chronic Myeloid Leukemia--Review.
Journal of Experimental Hematology 2023;31(2):585-588
The treatment of chronic myeloid leukemia (CML) was revolutionized with the advent of the first-generation tyrosine kinase inhibitors (TKIs), but drug resistance developed during treatment, leading to the development of the second-generation (dasatinib, nilotinib, and bosutinib) and third-generation (ponatinib) TKI. Compared with previous treatment regimens, specific TKI can significantly improve the response rate, overall survival rate and prognosis of CML. Only a few patients with BCR-ABL mutation are insensitive to the second-generation TKIs, so it is suggested to select the second-generation TKIs for patients with specific mutations. For patients with other mutations and without mutations, the second-generation TKI should be selected according to the patient's medical history, while the third-generation TKIs should be selected for mutations that are insensitive to the second-generation TKIs, such as T315I mutation that is sensitive to ponatinib. Due to different BCR-ABL mutations in patients with different sensitivity to the second and third-generation TKIs, this paper will review the latest research progress of the efficacy of the second and third-generation TKIs in CML patients with BCR-ABL mutations.
Humans
;
Antineoplastic Agents/pharmacology*
;
Dasatinib/pharmacology*
;
Drug Resistance, Neoplasm/genetics*
;
Fusion Proteins, bcr-abl/genetics*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Mutation
;
Protein Kinase Inhibitors/therapeutic use*
2.Advances in Diagnosis and Treatment of HER2-positive Non-small Cell Lung Cancer.
Chenyi REN ; He CAO ; Jing ZHENG ; Wenjia SUN ; Jianya ZHOU
Chinese Journal of Lung Cancer 2023;26(4):291-302
Lung cancer is the most common malignancy in the world and the leading cause of cancer death. Human epidermal growth factor receptor 2 (HER2) positive non-small cell lung cancer (NSCLC) refers to the NSCLC caused by mutation, amplification or overexpression of the HER2 gene, resulting in its dysfunction. HER2 is the most active receptor in the HER family and can combine with other members to form dimers, which can activate multiple signaling pathways and regulate cell proliferation, differentiation, migration and apoptosis. In NSCLC, HER2 positivity is usually considered a poor prognostic marker. At present, the diagnosis and treatment of HER2-positive NSCLC are not mature. Immunohistochemistry (IHC), next generation sequencing (NGS) and other technologies are often used to detect the positive status of HER2 mutation, amplification or overexpression. In previous studies, antitumor drugs did not show ideal therapeutic effects in HER2-positive NSCLC. However, in recent years, related researches have shown that antibody-drug conjugates (ADCs) and new tyrosine kinase inhibitors (TKIs) in targeted therapy show good antitumor activity against HER2 positive NSCLC. This article summarized the progress in diagnosis and treatment of HER2-positive NSCLC, so as to provide reference for subsequent researches.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Receptor, ErbB-2/genetics*
;
Mutation
;
Antineoplastic Agents/pharmacology*
;
Signal Transduction
;
Protein Kinase Inhibitors/therapeutic use*
3.CUDC-101 as a dual-target inhibitor of EGFR and HDAC enhances the anti-myeloma effects of bortezomib by regulating G2/M cell cycle arrest.
Wen CAO ; Shunnan YAO ; Anqi LI ; Haoguang CHEN ; Enfan ZHANG ; Liqin CAO ; Jinna ZHANG ; Yifan HOU ; Zhenfeng DAI ; Jing CHEN ; Xi HUANG ; Li YANG ; Zhen CAI
Journal of Zhejiang University. Science. B 2023;24(5):442-454
CUDC-101, an effective and multi-target inhibitor of epidermal growth factor receptor (EGFR), histone deacetylase (HDAC), and human epidermal growth factor receptor 2 (HER2), has been reported to inhibit many kinds of cancers, such as acute promyelocytic leukemia and non-Hodgkin's lymphoma. However, no studies have yet investigated whether CUDC-101 is effective against myeloma. Herein, we proved that CUDC-101 effectively inhibits the proliferation of multiple myeloma (MM) cell lines and induces cell apoptosis in a time- and dose-dependent manner. Moreover, CUDC-101 markedly blocked the signaling pathway of EGFR/phosphoinositide-3-kinase (PI3K) and HDAC, and regulated the cell cycle G2/M arrest. Moreover, we revealed through in vivo experiment that CUDC-101 is a potent anti-myeloma drug. Bortezomib is one of the important drugs in MM treatment, and we investigated whether CUDC-101 has a synergistic or additive effect with bortezomib. The results showed that this drug combination had a synergistic anti-myeloma effect by inducing G2/M phase blockade. Collectively, our findings revealed that CUDC-101 could act on its own or in conjunction with bortezomib, which provides insights into exploring new strategies for MM treatment.
Humans
;
Antineoplastic Agents/therapeutic use*
;
Apoptosis
;
Bortezomib/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
ErbB Receptors/antagonists & inhibitors*
;
G2 Phase Cell Cycle Checkpoints
;
Histone Deacetylase Inhibitors/pharmacology*
;
Histone Deacetylases/metabolism*
;
M Cells
;
Multiple Myeloma/drug therapy*
4.Study on the Relationship between Integrin 2A and Drug Resistance in Chronic Myeloid Leukemia.
Nai-Qin ZHAO ; Cheng-Yun PAN ; Tian-Zhuo ZHANG ; Ping LIU ; Tian-Zhen HU ; Qin SHANG ; Hong LUO ; Qin FANG ; Ji-Shi WANG
Journal of Experimental Hematology 2023;31(1):8-16
OBJECTIVE:
To explore the expression pattern and clinical significance of Integral membrane protein 2A(ITM2A) in drug resistant patients with chronic myeloid leukemia (CML).
METHODS:
The expression of ITM2A in CML was evaluated by qRT-PCR, Western blot and immunocytochemistry. In order to understand the possible biological effects of ITM2A, apoptosis, cell cycle and myeloid differentiation antigen expression of CML cells were detected by flow cytometry after over-expression of ITM2A. The nuderlying molecular mechanism of its biological effect was explored.
RESULTS:
The expression of ITM2A in bone marrow of CML resistant patients was significantly lower than that of sensitive patients and healthy donors(P<0.05). The CML resistant strain cell K562R was successfully constructed in vitro. The expression of ITM2A in the resistant strain was significantly lower than that in the sensitive strain(P<0.05). Overexpression of ITM2A in K562R cells increased the sensitivity of K562R cells to imatinib and blocked the cell cycle in G2 phase(P<0.05), but did not affect myeloid differentiation. Mechanistically, up-regulation of ITM2A reduced phosphorylation in ERK signaling (P<0.05).
CONCLUSION
The expression of ITM2A was low in patients with drug resistance of CML, and the low expression of ITM2A may be the key factor of imatinib resistance in CML.
Humans
;
Antineoplastic Agents/pharmacology*
;
Apoptosis
;
Drug Resistance, Neoplasm
;
Imatinib Mesylate/therapeutic use*
;
K562 Cells
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Signal Transduction
5.TRPV1 participates in the protective effect of propolis on colonic tissue of ulcerative colitis.
Jing WANG ; Zhen QIAN ; Taiyu LU ; Ruirui LI ; Hui LI ; Hao ZHANG ; Li SUN ; Haihua WANG
Journal of Central South University(Medical Sciences) 2023;48(2):182-190
OBJECTIVES:
Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) mainly characterized by inflammation, ulceration and erosion of colonic mucosa and submucosa. Transient receptor potential vanilloid 1 (TRPV1) is an important mediator of visceral pain and inflammatory bowel disease. This study aims to investigate the protective effect of water soluble propolis (WSP) on UC colon inflammatory tissue and the role of TRPV1.
METHODS:
Male SD rats were randomly divided into 6 groups (n=8): a normal control (NC) group, an ulcerative colitis model (UC) group, a low-WSP (L-WSP) group, a medium-WSP (M-WSP) group, a high-WSP (H-WSP) group, and a salazosulfapyridine (SASP) group. The rats in the NC group drank water freely, and the other groups drank 4% dextran sulfate sodium (DSS) solution freely for 7 d to replicate the ulcerative colitis model. Based on the successful replication of the UC, the L-WSP, M-WSP, and H-WSP groups were given 50, 100, and 200 mg/kg of water-soluble propolis by gavage for 7 d, and the SASP group was given 100 mg/kg of sulfasalazine by gavage for 7 d. The body weight of rats in each group was measured at the same time every day, the fecal traits and occult blood were observed to record the disease activity index (DAI). After intragastric administration, the animals were sacrificed after fasted 24 h. Serum and colonic tissue were collected, and the changes of MDA, IL-6 and TNF-α were detected. The pathological changes of colon tissues were observed by HE staining, and the expression of TRPV1 in colon tissues was observed by Western blotting, immunohistochemistry, and immunofluorescence.
RESULTS:
The animals in each group that drank DSS freely showed symptoms such as weight loss, decreased appetite, depressed state, and hematochezia, indicating that the model was successfully established. Compared with the NC group, DAI scores of other groups were increased (all P<0.05). MDA, IL-6, TNF-α in serum and colon tissues of the UC group were increased compared with the NC group (all P<0.01), and they were decreased after WSP and SASP treatment (all P<0.01). The results of showed that the colon tissue structure was obviously broken and inflammatory infiltration in the UC group, while the H-WSP group and the SASP group significantly improved the colon tissue and alleviated inflammatory infiltration. The expression of TRPV1 in colon tissues in the UC group was increased compared with the NC group (all P<0.01), and it was decreased after WSP and SASP treatment.
CONCLUSIONS
WSP can alleviate the inflammatory state of ulcerative colitis induced by DSS, which might be related to the inhibition of inflammatory factors release, and down-regulation or desensitization of TRPV1.
Animals
;
Male
;
Rats
;
Antineoplastic Agents/therapeutic use*
;
Colitis, Ulcerative/chemically induced*
;
Colon/pathology*
;
Disease Models, Animal
;
Interleukin-6/pharmacology*
;
Propolis/therapeutic use*
;
Rats, Sprague-Dawley
;
Sulfasalazine/therapeutic use*
;
TRPV Cation Channels
;
Tumor Necrosis Factor-alpha/pharmacology*
6.Disulfiram enhances the antitumor activity of cisplatin by inhibiting the Fanconi anemia repair pathway.
Meng YUAN ; Qian WU ; Mingyang ZHANG ; Minshan LAI ; Wenbo CHEN ; Jianfeng YANG ; Li JIANG ; Ji CAO
Journal of Zhejiang University. Science. B 2023;24(3):207-220
A series of chemotherapeutic drugs that induce DNA damage, such as cisplatin (DDP), are standard clinical treatments for ovarian cancer, testicular cancer, and other diseases that lack effective targeted drug therapy. Drug resistance is one of the main factors limiting their application. Sensitizers can overcome the drug resistance of tumor cells, thereby enhancing the antitumor activity of chemotherapeutic drugs. In this study, we aimed to identify marketable drugs that could be potential chemotherapy sensitizers and explore the underlying mechanisms. We found that the alcohol withdrawal drug disulfiram (DSF) could significantly enhance the antitumor activity of DDP. JC-1 staining, propidium iodide (PI) staining, and western blotting confirmed that the combination of DSF and DDP could enhance the apoptosis of tumor cells. Subsequent RNA sequencing combined with Gene Set Enrichment Analysis (GSEA) pathway enrichment analysis and cell biology studies such as immunofluorescence suggested an underlying mechanism: DSF makes cells more vulnerable to DNA damage by inhibiting the Fanconi anemia (FA) repair pathway, exerting a sensitizing effect to DNA damaging agents including platinum chemotherapy drugs. Thus, our study illustrated the potential mechanism of action of DSF in enhancing the antitumor effect of DDP. This might provide an effective and safe solution for combating DDP resistance in clinical treatment.
Female
;
Male
;
Humans
;
Cisplatin/pharmacology*
;
Disulfiram/pharmacology*
;
Testicular Neoplasms/drug therapy*
;
Fanconi Anemia/drug therapy*
;
Alcoholism/drug therapy*
;
Drug Resistance, Neoplasm
;
Cell Line, Tumor
;
Substance Withdrawal Syndrome/drug therapy*
;
Apoptosis
;
Antineoplastic Agents/therapeutic use*
;
Cell Proliferation
7.Recent Advance of Newly Therapy for Chronic Myeloid Leukemia with BCR-ABLT315I Mutation--Review.
Hu-Rong LAI ; Qian-Miao WU ; Ya-Zhi YANG ; Jian LI
Journal of Experimental Hematology 2023;31(5):1579-1583
BCR-ABLT315I mutation is the main mechanism of resistance to the first and second generation tyrosine kinase inhibitor (TKI) for patients with chronic myeloid leukemia (CML). Ponatinib as the third generation TKI has been found that can significantly improve the prognosis of CML patients with T315I mutation. However, the latest report has discovered that the T315I compound mutant is even resistant to ponatinib, which aroused the enthusiasm of research on the mechanism of CML resistance and targeted therapy once again. Previous studies have shown that TKI combined with other targeted drugs is effective to CML patients with drug resistance or relapse due to T315I mutation. The latest research has found that the allosteric inhibitor asciminib combined with TKI therapy is equally effective to CML patients with T315I compound mutant, but the specific mechanism is not yet clarified. This review will focus on the latest research progress of therapy for CML with BCR-ABLT315I mutation, hoping to provide reference for researching new drugs and improve therapy for treating CML with T315I mutation.
Humans
;
Drug Resistance, Neoplasm/genetics*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics*
;
Fusion Proteins, bcr-abl/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Mutation
;
Antineoplastic Agents/pharmacology*
8.Research Progress on Mechanism of Bortezomib Resistance in Multiple Myeloma.
Journal of Experimental Hematology 2023;31(5):1584-1587
Multiple myeloma (MM) is a common plasma cell malignancy, accounting for the second largest hematological malignancy. Proteasome inhibitors represented by bortezomib (BTZ) have been the main treatment for patients with newly diagnosed and relapsed or refractory myeloma in nearly two decades. Although BTZ has improved the prognosis of MM patients, MM remains incurable in most patients, mainly because MM cells become resistant to BTZ. This review is to better understand the mechanism of MM resistance to BTZ and explore possible new therapeutic strategies.
Humans
;
Bortezomib/therapeutic use*
;
Multiple Myeloma/pathology*
;
Proteasome Inhibitors/pharmacology*
;
Prognosis
;
Plasma Cells/pathology*
;
Drug Resistance, Neoplasm
;
Antineoplastic Agents/pharmacology*
;
Cell Line, Tumor
9.Antitumor Effect of Dihydroartemisinin on Diffuse Large B-Cell Lymphoma.
Yan ZHANG ; Li-Hui MA ; Li-Li DENG ; Zhuang-Miao ZHANG
Journal of Experimental Hematology 2022;30(5):1428-1434
OBJECTIVE:
To investigate the potential antitumor effect and its mechanism of dihydroartemisinin (DHA) on diffuse large B-cell lymphoma (DLBCL).
METHODS:
OCI-Ly7 cells were respectively treated with different concentrations of DHA (0, 12.5, 25, 50 and 100 μmol/L) , CCK-8 was used to detect the cells viability. Subsequently, OCI-Ly7 cells were divided into 5 groups : DHA 0,25,50,100 μmol / L and DHA (100 μmol / L) + Colivelin (STAT3 activator). Aldehyde dehydrogenase (ALDH) positive cells were sorted by flow cytometry, the sphere-forming ability of stem cells was detected. Transwell assay and scratch test were used to analyze the invasion and migration of cells. Western blot was used to detect the expression of migration and invasion-related proteins, as well as the phosphorylation levels of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3(STAT3).
RESULTS:
DHA induced obvious cytotoxicity to OCI-Ly7 cells. Compared with the control group, the stem cell-like properties, invasion and migration of OCI-Ly7 were significantly inhibited in DHA 50 μmol/L group and 100 μmol/L group, while the phosphorylation levels of JAK2 and STAT3 were significantly reduced. There was no significant difference in DHA 25 μmol/L group compared with the control group. Treated with Colivelin, the inhibition of DHA on OCI-Ly7 stem cell-like properties, invasion and migration was significantly reversed, and the expression of p-STAT3 was significantly up-regulated.
CONCLUSION
DHA has antitumor effect on DLBCL, and its mechanism may be through inhibiting the activation of JAK2/STAT3 pathway to inhibit the stem cell-like properties, invasion and migration of DLBCL cells.
Aldehyde Dehydrogenase/pharmacology*
;
Antineoplastic Agents/therapeutic use*
;
Artemisinins/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Humans
;
Janus Kinase 2
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
STAT3 Transcription Factor/metabolism*
;
Signal Transduction
;
Sincalide/pharmacology*
10.Babao Dan Alleviates 5-Fluorouracil-Induced Intestinal Damage via Wnt/β-Catenin Pathway.
Meng-Xuan GUI ; Bin HUANG ; Jun PENG ; Xi CHEN ; Ragunath MUTHU ; Ying GAO ; Rui-Guo WANG ; Jiu-Mao LIN
Chinese journal of integrative medicine 2022;28(11):1000-1006
OBJECTIVE:
To evaluate the protective function of Babao Dan (BBD) on 5-flurouracil (5-FU)-induced intestinal mucositis (IM) and uncover the underlying mechanism.
METHODS:
A total of 18 male mice were randomly divided into 3 groups by a random number table, including control, 5-FU and 5-FU combined BBD groups, 6 mice in each group. A single intraperitoneal injection of 5-FU (150 mg/kg) was performed in 5-FU and 5-FU combined BBD groups on day 0. Mice in 5-FU combined BBD group were gavaged with BBD (250 mg/kg) daily from day 1 to 6. Mice in the control group were gavaged with saline solution for 6 days. The body weight and diarrhea index of mice were recorded daily. On the 7th day, the blood from the heart of mice was collected to analyze the proportional changes of immunological cells, and the mice were subsequently euthanized by mild anesthesia with 2% pentobarbital sodium. Colorectal lengths and villus heights were measured. Intestinal-cellular apoptosis and proliferation were evaluated by Tunel assay and immunohistochemical staining of proliferating cell nuclear antigen, respectively. Immunohistochemistry and Western blot were performed to investigate the expressions of components in Wnt/β-catenin pathway (Wnt3, LRP5, β-catenin, c-Myc, LRG5 and CD44).
RESULTS:
BBD obviously alleviated 5-FU-induced body weight loss and diarrhea, and reversed the decrease in the number of white blood cells, including monocyte, granulocyte and lymphocyte, and platelet (P<0.01). The shortening of colon caused by 5-FU was also reversed by BBD (P<0.01). Moreover, BBD inhibited apoptosis and promoted proliferation in jejunum tissues so as to reduce the intestinal mucosal damage and improve the integrity of villus and crypts. Mechanically, the expression levels of Wnt/β -catenin mediators such as Wnt3, LRP5, β-catenin were upregulated by BBD, activating the transcription of c-Myc, LRG5 and CD44 (P<0.01).
CONCLUSIONS
BBD attenuates the adverse effects induced by 5-FU via Wnt/β-catenin pathway, suggesting it may act as a potential agent against chemotherapy-induced intestinal mucositis.
Animals
;
Male
;
Mice
;
Antineoplastic Agents/therapeutic use*
;
beta Catenin/metabolism*
;
Diarrhea/drug therapy*
;
Fluorouracil/pharmacology*
;
Intestinal Mucosa
;
Mucositis/metabolism*
;
Pentobarbital/therapeutic use*
;
Proliferating Cell Nuclear Antigen/metabolism*
;
Saline Solution

Result Analysis
Print
Save
E-mail