1.In vitro and in vivo anticancer potential and molecular targets of the new colchicine analog IIIM-067.
Sumera MALIK ; Mubashir J MINTOO ; Chilakala Nagarjuna REDDY ; Rajesh KUMAR ; Pankul KOTWAL ; Sandip B BHARATE ; Utpal NANDI ; Dilip M MONDHE ; Sanket K SHUKLA
Journal of Integrative Medicine 2023;21(1):62-76
OBJECTIVE:
The current study evaluated various new colchicine analogs for their anticancer activity and to study the primary mechanism of apoptosis and in vivo antitumor activity of the analogs with selective anticancer properties and minimal toxicity to normal cells.
METHODS:
Sulforhodamine B (SRB) assay was used to screen various colchicine analogs for their in vitro cytotoxicity. The effect of N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(pyrrolidine-1-yl)5,6,7,9-tetrahydrobenzo[a] heptalene-7-yl] acetamide (IIIM-067) on clonogenicity, apoptotic induction, and invasiveness of A549 cells was determined using a clonogenic assay, scratch assay, and staining with 4',6-diamidino-2-phenylindole (DAPI) and annexin V/propidium iodide. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were observed using fluorescence microscopy. Western blot analysis was used to quantify expression of proteins involved in apoptosis, cell cycle, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Pharmacokinetic and in vivo efficacy studies against Ehrlich ascites carcinoma (EAC) and Ehrlich solid tumor models were conducted using Swiss albino mice.
RESULTS:
IIIM-067 showed potent cytotoxicity and better selectivity than all other colchicine analogs screened in this study. The selective activity of IIIM-067 toward A549 cells was higher among other cancer cell lines, with a selectivity index (SI) value of 2.28. IIIM-067 demonstrated concentration- and time-dependent cytotoxicity against A549 cells with half-maximal inhibitory concentration values of 0.207, 0.150 and 0.106 μmol/L at 24, 48 and 72 h, respectively. It also had reduced toxicity to normal cells (SI > 1) than the parent compound colchicine (SI = 1). IIIM-067 reduced the clonogenic ability of A549 cells in a dose-dependent manner. IIIM-067 enhanced ROS production from 24.6% at 0.05 μmol/L to 82.1% at 0.4 μmol/L and substantially decreased the MMP (100% in control to 5.6% at 0.4 μmol/L). The annexin V-FITC assay demonstrated 78% apoptosis at 0.4 μmol/L. IIIM-067 significantly (P < 0.5) induced the expression of various intrinsic apoptotic pathway proteins, and it differentially regulated the PI3K/AKT/mTOR signaling pathway. Furthermore, IIIM-067 exhibited remarkable in vivo anticancer activity against the murine EAC model, with tumor growth inhibition (TGI) of 67.0% at a dose of 6 mg/kg (i.p.) and a reduced mortality compared to colchicine. IIIM-067 also effectively inhibited the tumor growth in the murine solid tumor model with TGI rates of 48.10%, 55.68% and 44.00% at doses of 5 mg/kg (i.p.), 6 mg/kg (i.p.) and 7 mg/kg (p.o.), respectively.
CONCLUSION
IIIM-067 exhibited significant anticancer activity with reduced toxicity both in vitro and in vivo and is a promising anticancer candidate. However, further studies are required in clinical settings to fully understand its potential.
Animals
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Antineoplastic Agents, Phytogenic/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Reactive Oxygen Species/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Colchicine/pharmacology*
;
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Mammals/metabolism*
2.Germacranolide sesquiterpenes from Carpesium cernuum and their anti-leukemia activity.
Chen YAN ; Qun LONG ; Yun-Dong ZHANG ; Gajendran BABU ; Madhu Varier KRISHNAPRIYA ; Jian-Fei QIU ; Jing-Rui SONG ; Qing RAO ; Ping YI ; Mao SUN ; Yan-Mei LI
Chinese Journal of Natural Medicines (English Ed.) 2021;19(7):528-535
In this study, three new germacranolide sesquiterpenes (1-3), together with six related known analogues (4-9) were isolated from the whole plant of Carpesium cernuum. Their structures were established by a combination of extensive NMR spectroscopic analysis, HR-ESIMS data, and ECD calculations. The anti-leukemia activities of all compounds towards three cell lines (HEL, KG-1a, and K562) were evaluated in vitro. Compounds 1-3 exhibited moderate cytotoxicity with IC
Antineoplastic Agents, Phytogenic/pharmacology*
;
Asteraceae/chemistry*
;
Drug Screening Assays, Antitumor
;
Humans
;
K562 Cells
;
Phytochemicals/pharmacology*
;
Sesquiterpenes, Germacrane/pharmacology*
3.Preparation of paclitaxel-loaded and folic acid-modified poly (lactic-co-glycolic acid) nano-micelles and in vitro anticancer effect on cervical cancer HeLa cells.
Xin-Jian LI ; Yun YOU ; Qiong-Ling ZHANG ; Bing-Bing ZHANG ; Lin YAN ; Ze-Min OU ; Yao ZHANG ; Yan-Jing WANG ; Yan TONG ; De-Wen LIU ; Jin-Yu WANG
China Journal of Chinese Materia Medica 2021;46(10):2481-2488
The paclitaxel-loaded and folic acid-modified poly(lactic-co-glycolic acid) nano-micelles(PTX@FA-PLGA-NMs) were prepared by the emulsion solvent evaporation method, and the parameters of paclitaxel-loaded nano-micelles were optimized with the particle size and PDI as evaluation indexes. The morphology of the nano-micelles was observed by transmission electron microscopy(TEM), and the stability, drug loading and encapsulation efficiency were systematically investigated. In vitro experiments were performed to study the cytotoxic effects of nano-micelles, apoptosis, and cellular uptake. Under the optimal parameters, the nano-micelles showed the particle size of(125.3±1.2) nm, the PDI of 0.086±0.026, the zeta potential of(-20.0±3.8) mV, the drug loading of 7.2%±0.75%, and the encapsulation efficiency of 50.7%±1.0%. The nano-micelles were in regular spherical shape as observed by TEM. The blank FA-PLGA-NMs exhibited almost no inhibitory effect on the proliferation and growth of tumor cells, while the drug-loaded nano-micelles and free PTX exhibited significant inhibitory effects. The IC_(50) of PTX@FA-PLGA-NMs and PTX was 0.56 μg·mL~(-1) and 0.66 μg·mL~(-1), respectively. The paclitaxel-loaded nano-micelles were potent in inhibiting cell migration as assessed by the scratch assay. PTX@FA-PLGA-NMs had good pro-apoptotic effect on cervical cancer HeLa cells and significantly promoted the uptake of HeLa cells. The results of in vitro experiments suggested that PTX@FA-PLGA-NMs could target and treat cervical cancer HeLa cells. Therefore, as nanodrug carriers, PTX@FA-PLGA-NMs with anti-cancer activity are a promising nano-system for improving the-rapeutic effects on tumors.
Antineoplastic Agents, Phytogenic/pharmacology*
;
Cell Line, Tumor
;
Drug Carriers
;
Female
;
Folic Acid
;
Glycolates
;
HeLa Cells
;
Humans
;
Micelles
;
Paclitaxel
;
Particle Size
;
Uterine Cervical Neoplasms/drug therapy*
4.Research progress on the source, production, and anti-cancer mechanisms of paclitaxel.
Yan-Hua YANG ; Jia-Wang MAO ; Xiao-Li TAN
Chinese Journal of Natural Medicines (English Ed.) 2020;18(12):890-897
Paclitaxel, a tetracyclic diterpenoid compounds, was firstly isolated from the bark of the Pacific yew trees. Currently, as a low toxicity, high efficiency, and broad-spectrum natural anti-cancer drug, paclitaxel has been widely used against ovarian cancer, breast cancer, uterine cancer, and other cancers. As the matter of fact, natural paclitaxel from Taxus species has been proved to be environmentally unsustainable and economically unfeasible. For this reason, researchers from all over the world are devoted to searching for new ways of obtaining paclitaxel. At present, other methods, including artificial cultivation of Taxus plants, microbial fermentation, chemical synthesis, tissue and cell culture have been sought and developed subsequently. Meanwhile, the biosynthesis of paclitaxel is also an extremely attractive method. Unlike other anti-cancer drugs, paclitaxel has its unique anti-cancer mechanisms. Here, the source, production, and anti-cancer mechanisms of paclitaxel were summarized and reviewed, which can provide theoretical basis and reference for further research on the production, anti-cancer mechanisms and utilization of paclitaxel.
Antineoplastic Agents, Phytogenic/pharmacology*
;
Humans
;
Neoplasms/drug therapy*
;
Paclitaxel/pharmacology*
5.Anti-migratory effects of Piper betle leaf aqueous extract on cancer cells and its microtubule targeting properties.
Mee Lee LOOI ; Alwyn Khai Howe WONG ; Shelly Anne GNAPRAGASAN ; Anis Zafirah JAPRI ; Aiysvariyah RAJEDADRAM ; Kar Yong PIN
Journal of Zhejiang University. Science. B 2020;21(9):745-748
Piper betle (PB), also known as "betel" in Malay language, is a tropical Asian vine. PB leaves are commonly chewed by Asians along with betel quid. It contains phenols such as eugenol and hydroxychavicol along with chlorophyll, β-carotene, and vitamin C (Salehi et al., 2019). Extracts from PB leaves have various medicinal properties including anticancer, antioxidant, anti-inflammatory, and antibacterial effects (Salehi et al., 2019). Previous research has shown that PB induces cell cycle arrest at late S or G2/M phase and causes apoptosis at higher doses (Wu et al., 2014; Guha Majumdar and Subramanian, 2019). A combination of PB leaf extract has also been shown to enhance the cytotoxicity of the anticancer drug, 5-fluorouracil (5-FU), in cancer cells (Ng et al., 2014).
Antineoplastic Agents, Phytogenic/pharmacology*
;
Cell Movement/drug effects*
;
HT29 Cells
;
Humans
;
Microtubules/drug effects*
;
Piper betle
;
Plant Extracts/pharmacology*
;
Plant Leaves
6.Screening combination ratio and exploring mechanism of Momordicae Semen and Epimedii Folium.
Yue-Yi KAN ; Ya-Jie WANG ; Jun LI ; Dao-Ran PANG ; Qing YANG ; Qi LI ; Yu-Jie LI ; Xiao-Gang WENG ; Ying CHEN ; Wei-Yan CAI ; Xiao-Xin ZHU
China Journal of Chinese Materia Medica 2020;45(2):374-382
The aim of this paper was to obtain low toxicity and high efficiency anti-tumor Chinese medicine through screening the combination ratios of Momordicae Semen and Epimedii Folium, and to explore the anti-tumor mechanism of the combination of two drugs by observing their effect on apoptosis-related proteins in cancer cells. Methyl thiazolyl tetrazolium(MTT) assay was used to observe the effect of drug combination on the proliferation of tumor cells from different tissue sources. The effects of the combination of the two drugs on tumor cells were analyzed by Compusyn software. Plate cloning assay was used to observe the effect of combination of these two drugs on the proliferation of A549 cells in vitro. The expression of reactive oxygen species(ROS) and apoptotic proteins p53, Bcl-2 and Bax were compared by using ROS kit and Western blot. Lewis lung cancer model was used to observe the anti-tumor effect of drugs in vivo. The results showed that the anti-tumor effect of their ethanol extract was more significant than that of water extract, and the anti-proliferation effect was strongest when the ratio was 1∶1(P<0.05). Compusyn analysis showed that the combination of the two drugs had synergistic effect. Further studies showed that after combined use, the number of clonogen formation in A549 cells was significantly reduced(P<0.01); ROS production was increased; the expression of apoptosis-related protein p53 was up-regulated, and the ratio of Bcl-2/Bax was decreased. In vivo animal study showed that the tumor inhibition rate was 53.06%(P<0.05) in the high dose group. As compared with the single use of the two drugs, the combination of the two drugs had more significant anti-proliferative effect on tumors, and the optimum ratio was 1∶1. The combination of the two drugs at a ratio of 1∶1 inhibited the proliferation of various tumor cells, and had no significant effect on normal liver cells LO2 when compared with other ratios. Therefore, it can be preliminarily inferred that the combination of the two drugs may have the effect of synergism and detoxification. Further studies showed that the combination of the two drugs can significantly inhibit the proliferation of A549 cells, and its mechanism may be related to the activation of endogenous apoptotic pathway. In vivo experiments also showed that the tumor inhibition rate increased with the increase of drug concentration.
A549 Cells
;
Animals
;
Antineoplastic Agents, Phytogenic/pharmacology*
;
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Drugs, Chinese Herbal/pharmacology*
;
Epimedium/chemistry*
;
Humans
;
Lung Neoplasms/drug therapy*
;
Momordica/chemistry*
;
Neoplasms, Experimental/drug therapy*
;
Plant Leaves/chemistry*
7.Effect of polyphyllin D on proliferation and apoptosis of human pancreatic cancer cells.
China Journal of Chinese Materia Medica 2020;45(6):1418-1422
Polyphyllin D is a steroid saponin monomer in Polyphyllin, with antibacterial, analgesic, sedative, anti-tumor and other pharmacological effects, but is rarely reported in pancreatic cancer. This study detected apoptosis-relevant indicators, in order to explore the effect of polyphyllin D on the proliferation and apoptosis of human pancreatic cancer Panc-1 cells and relevant mechanisms of action. After pancreatic cancer Panc-1 cells were treated with polyphyllin D(0, 1, 2, 3, 4, 5 μg·μL~(-1)) for 24, 48 and 72 hours, CCK-8 method was used to detect the effect of polyphyllin D on the proliferation of pancreatic cancer Panc-1 cells. Flow cytometry was used to detect cell cycle and changes in mitochondrial membrane potential(MMP). The apoptosis was detected by Annexin V-FITC/PI staining, and Western blot was used to detect the protein expressions of cytochrome C(Cyto C), Bax, Bcl-2, cleaved caspase-3 and cleaved caspase-9. The results indicated that compared with the control group, polyphyllin D could inhibit the proliferative activity of Panc-1 cells in a time and concentration-dependent manner. Flow cytometry results showed that polyphyllin D could block the cells in S and G_2/M phase in a concentration manner, the MMP of the cells was significantly reduced, and the apoptosis rate increased with the concentration of polyphyllin D. Western blot results showed that polyphyllin D could concentration-dependently up-regulate the protein expression levels of Bax, Cyto C, cleaved caspase-3 and cleaved caspase-9, and down-regulate the protein expression level of Bcl-2. The above findings suggested that polyphyllin D could effectively inhibit the proliferation of Panc-1 cells, and its mechanism may be related to the blocking of cell growth cycle and the apoptosis induced by mitochondrial pathway.
Antineoplastic Agents, Phytogenic/pharmacology*
;
Apoptosis
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation
;
Diosgenin/pharmacology*
;
Humans
;
Pancreatic Neoplasms/pathology*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Saponins/pharmacology*
;
bcl-2-Associated X Protein/metabolism*
8.Antioxidant Potential of Four Species of Natural Product and Therapeutic Strategies for Cancer through Suppression of Viability in the Human Multiple Myeloma Cell Line U266.
Fatma GUESMI ; Issam SAIDI ; Rawya SOUSSI ; Najla HFAIEDH ; Ahmed LANDOULSI
Biomedical and Environmental Sciences 2019;32(1):22-33
OBJECTIVE:
This research aimed to evaluate the protective effects of bioactive compounds such as phenolic acids, flavonoids, and tannins present in four species extracted with methanol.
METHODS:
The total phenolic content of the methanolic extracts was measured spectrophotometrically. The effect of the extracts on cell viability in U266 cells was measured. The effects of extracts on free radical scavenging were assessed by the DPPH test and FRAP assay. Antibacterial effects of the natural products in this report were investigated by using the disc diffusion method.
RESULTS:
Our results clearly demonstrated that the methanolic extracts were characterized by a high amount of phenolic compounds. It has been speculated that ME-TA and ME-TAl exhibit a significant (P < 0.05) and dose-dependent antiradical potential. The exposure of cells to high doses of extracts almost completely suppressed cell growth in vitro. ME-TA and ME-TAl showed significant cytotoxic effects at a concentration of 100 μg/mL in the U266 cell line. ME-TAl and ME-CF inhibited the growth of B. subtilis and S. aureus, respectively, to the same extent as 10 μg/μL of chloramphenicol at a concentration of 1 mg/mL.
CONCLUSION
Overall, these results suggest that plants used in traditional medicine have a novel application as free radical scavengers, bacterial inhibitors and tumor suppressors.
Anti-Bacterial Agents
;
pharmacology
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Antioxidants
;
pharmacology
;
Bacteria
;
drug effects
;
growth & development
;
Biological Products
;
pharmacology
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Humans
;
Magnoliopsida
;
chemistry
;
Multiple Myeloma
;
Phytochemicals
;
analysis
;
pharmacology
;
Plant Extracts
;
chemistry
;
pharmacology
9.Research progress on anti-tumor effects and mechanisms of triptolide and its combined application.
Jin-Feng SHI ; Yao-Yao LUO ; Jia-Xin LI ; Rui-Feng LUO ; Liang CHEN ; Jie LI ; Jin-Ming ZHANG ; Chao-Mei FU
China Journal of Chinese Materia Medica 2019;44(16):3391-3398
Tumors are major chronic diseases and seriously threaten human health all over the world. How to effectively control and cure tumors is one of the most pivotal problems in the medical field. At present,surgery,radiotherapy and chemotherapy are still the main treatment methods. However,the side effects of radiotherapy and chemotherapy cannot be underestimated. Therefore,it is of great practical significance to find new anti-cancer drugs with low toxicity,high efficiency and targeting to cancer cells. With the increasing incidence of tumor,the anti-tumor effect of traditional Chinese medicine has increasingly become a research hotspot. Triptolide,which is a natural diterpenoid active ingredient derived from of Tripterygium wilfordii,as one of the highly active components,has anti-inflammatory,immunosuppressive,anti-tumor and other multiple effects. A large number of studies have confirmed that it has good anti-tumor activity against various tumors in vivo and in vitro. It can play an anti-tumor role by inhibiting the proliferation of cancer cells,inducing apoptosis of cancer cells,inducing autophagy of cancer cells,blocking the cell cycle,inhibiting the migration,invasion and metastasis of cancer cells,reversing multidrug resistance,mediating tumor immunity and inhibiting angiogenesis. On the basis of literatures,this paper reviews the anti-tumor effect and mechanism of triptolide,and analyzes the current situation of triptolide combined with other chemotherapy drugs,in order to promote deep research and better clinical application about triptolide.
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Apoptosis
;
Autophagy
;
Cell Cycle Checkpoints
;
Diterpenes
;
pharmacology
;
Epoxy Compounds
;
pharmacology
;
Humans
;
Neoplasms
;
drug therapy
;
Phenanthrenes
;
pharmacology
;
Tripterygium
;
chemistry
10.Anti-tumor activity of HIS-4,a biflavonoid from Resina draconis,on human hepatoma HepG2 and SK-HEP-1 cells.
Ya-Nan ZHAO ; Ai-Lin YANG ; Dao-Ran PANG ; Xiao-Qin SU ; Xiao-Nan CHEN ; Ying-Ying TIAN ; Yun-Fang ZHAO ; Jun LI ; Peng-Fei TU ; Zhong-Dong HU
China Journal of Chinese Materia Medica 2019;44(7):1442-1449
The research of anti-hepatocellular carcinoma(HCC) drug has attracted more and more attention. Natural products are the important source of active compounds for cancer treatment. A biflavonoid HIS-4 was isolated from Resina draconis in our previous study. MTT assay, hoechst staining, and flow cytometry analysis were used to investigate the effects of HIS-4 on the proliferation and apoptosis of human hepatoma HepG2 and SK-HEP-1 cells. Moreover, the effects of HIS-4 on the migration and invasion ability of HepG2 and SK-HEP-1 cells were evaluated by wound healing assay and Transwell assay. In addition, MTT assay, flow cytometry analyses, Hoechst staining, wound healing assay, Transwell assay, and tube formation assay were used to explore the anti-angiogenic activity of HIS-4 in human umbilical vein endothelial cells(HUVECs). Mechanistically, the HIS-4 regulatory of signal pathways in H9 epG2 and SK-HEP-1 cells were analyzed by Western blot. This results showed that HIS-4 suppressed the proliferation of human hepatoma HepG2 and SK-HEP-1 cells. Moreover HIS-4 induced their apoptosis of HepG2 and SK-HEP-1 cells. HIS-4 inhibited the migration and invasion of HepG2 and SK-HEP-1 cells. Additionally, HIS-4 exhibited angiogenesis effects. Mechanistically, up-regulation of MAPK signaling pathway and down-regulation of mTOR signaling pathway may be responsible for anti-hepatoma activity of HIS-4. Therefore, HIS-4 may be a promising candidate drug for HCC treatment.
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Apoptosis
;
Biflavonoids
;
pharmacology
;
Carcinoma, Hepatocellular
;
drug therapy
;
pathology
;
Cell Movement
;
Cell Proliferation
;
Dracaena
;
chemistry
;
Hep G2 Cells
;
Humans
;
Liver Neoplasms
;
drug therapy
;
pathology
;
Phytochemicals
;
pharmacology

Result Analysis
Print
Save
E-mail