1.Neoantigen-driven personalized tumor therapy: An update from discovery to clinical application.
Na XIE ; Guobo SHEN ; Canhua HUANG ; Huili ZHU
Chinese Medical Journal 2025;138(17):2057-2090
Neoantigens exhibit high immunogenic potential and confer a uniqueness to tumor cells, making them ideal targets for personalized cancer immunotherapy. Neoantigens originate from tumor-specific genetic alterations, abnormal viral infections, or other biological mechanisms, including atypical RNA splicing events and post-translational modifications (PTMs). These neoantigens are recognized as foreign by the immune system, eliciting an immune response that largely bypasses conventional mechanisms of central and peripheral tolerance. Advances in next-generation sequencing (NGS), mass spectrometry (MS), and artificial intelligence (AI) have greatly expedited the rapid detection and forecasting of neoantigens, markedly propelling the development of diverse immunotherapeutic strategies, including cancer vaccines, adoptive cell therapy, and antibody treatment. In this review, we comprehensively explore the discovery and characterization of neoantigens and their clinical use within promising immunotherapeutic frameworks. Additionally, we address the current landscape of neoantigen research, the intrinsic challenges of the field, and potential pathways for clinical application in cancer treatment.
Humans
;
Neoplasms/therapy*
;
Precision Medicine/methods*
;
Immunotherapy/methods*
;
Antigens, Neoplasm/genetics*
;
Cancer Vaccines/immunology*
;
High-Throughput Nucleotide Sequencing
2.LAG-3 and PD-1 combination therapy in tumor immunotherapy.
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):355-362
Programmed death 1 (PD-1) and its ligand (PD-L1) serve as crucial targets in cancer immunotherapy, and their inhibitors have significantly improved the prognosis of many patients with malignant tumors. However, the issues of drug resistance and limited overall response rate associated with monotherapy remain prevalent. As a new generation of immune checkpoints, lymphocyte activation gene 3 (LAG-3) synergistically enhances the suppression of T cells alongside PD-1 in various cancers. Combining the blockade of both PD-1 and LAG-3 yields stronger anti-tumor immune effects compared to blocking either target alone, thereby reversing the immunosuppressive state of the tumor microenvironment and reducing the occurrence of resistance. This review covers the structural characteristics of LAG-3 and unveils its specific interactions with PD-1 across multiple cancers, providing a novel reference for overcoming the limitations of single-agent therapy.
Humans
;
Neoplasms/immunology*
;
Immunotherapy/methods*
;
Programmed Cell Death 1 Receptor/metabolism*
;
Lymphocyte Activation Gene 3 Protein
;
Antigens, CD/metabolism*
;
Animals
;
Tumor Microenvironment/immunology*
;
Immune Checkpoint Inhibitors/therapeutic use*
3.A novel fully human LAG-3 monoclonal antibody LBL-007 combined with PD-1 antibody inhibits proliferation, migration and invasion of tumor cells via blocking NF-κB pathway.
Huinan ZHOU ; Jianfei LIU ; Chenglin WU ; Kewei QIN ; Lijun ZHOU
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):398-405
Objective To investigate the effects of LBL-007, a novel fully human lymphocyte activation gene 3 (LAG-3) monoclonal antibody, in combination with programmed cell death protein 1 (PD-1) antibody, on the invasion, migration and proliferation of tumor cells, and to elucidate the underlying mechanisms. Methods Human lymphocyte cells Jurkat were co-cultured with A549 and MGC803 tumor cell lines and treated with the isotype control antibody human IgG, LBL-007, anti-PD-1 antibody BE0188, or tumor necrosis factor-alpha (TNF-α, the NF-κB signaling pathway agonist). Tumor cell proliferation was assessed using a colony formation assay; invasion was measured by TranswellTM assay; migration was evaluated using a wound healing assay. Western blotting was employed to determine the expression levels of NF-κB pathway-related proteins: IκB inhibitor kinase alpha (Ikkα), phosphorylated Ikkα (p-IKKα), NF-κB subunit p65, phosphorylated p65 (p-p65), NF-κB Inhibitor Alpha (IκBα), phosphorylated IκBα (p-IκBα), matrix metalloproteinase 9 (MMP9), and MMP2. Results Compared with the control and IgG isotype groups, LBL-007 and BE0188 significantly reduced tumor cell proliferation, invasion, and migration. They also decreased the phosphorylation of p-IKKα, p-p65 and p-IκBα, and the expression of MMP9 and MMP2 of tumor cells in the co-culture system. The combined treatment of LBL-007 and BE0188 enhanced inhibitory effects. Treatment with the NF-κB signaling pathway agonist TNF-α reversed the suppressive effects of LBL-007 and BE0188 on tumor cell proliferation, invasion, migration, and NF-κB signaling. Conclusion LBL-007 and anti-PD-1 antibody synergistically inhibit the invasion, migration, and proliferation of A549 and MGC803 tumor cells by blocking the NF-κB signaling pathway.
Humans
;
Cell Proliferation/drug effects*
;
Cell Movement/drug effects*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Neoplasm Invasiveness
;
Antibodies, Monoclonal/pharmacology*
;
Programmed Cell Death 1 Receptor/antagonists & inhibitors*
;
Cell Line, Tumor
;
Antigens, CD/immunology*
;
Lymphocyte Activation Gene 3 Protein
;
A549 Cells
;
I-kappa B Kinase/metabolism*
;
Jurkat Cells
;
Matrix Metalloproteinase 9/metabolism*
4.Preparation and application of bovine CD4 monoclonal antibodies.
Wunjun KONG ; Yueshu ZHU ; Zhengzhong XU ; Chengkun ZHENG ; Xiang CHEN ; Xinan JIAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):450-455
Objective To prepare monoclonal antibodies against bovine CD4 and identify their basic biological characteristics. Methods Recombinant bovine CD4 (rHis-BoCD4 and rGST-BoCD4) was successfully expressed and purified by constructing a prokaryotic plasmid of bovine CD4 gene. The bovine CD4 monoclonal antibody was produced using hybridoma technology. The subtype and potency of the monoclonal antibody were identified and analyzed by ELISA, while specificity was analyzed through indirect immunofluorescence assay (IFA) and Western-blot. Results Four hybridoma cell lines, namely, 1H4, 6A10, 3F9 and 4G10, stably secreting monoclonal antibodies against BoCD4 were successfully obtained. The subclasses of the monoclonal antibodies subclass 6A10 was IgG2b and the rest of the monoclonal antibodies were of IgM type. Western-blot results showed that the four anti-bovine CD4 mAb strains were able to specifically bind to the bovine CD4 protein expressed in vitro. Indirect immunofluorescence assay showed that four monoclonal antibodies were able to specifically recognize the natural bovine CD4 protein. Flow cytometry assay showed that 3F9 was best to recognize bovine natural CD4 molecules. Conclusion Four monoclonal antibody strains with high specificity to natural bovine CD4 protein were successfully prepared, which lays the foundation for the subsequent studies on the function of bovine CD4 and diagnosis and treatment of bovine T-lymphocyte diseases.
Animals
;
Antibodies, Monoclonal/isolation & purification*
;
Cattle
;
CD4 Antigens/genetics*
;
Hybridomas/immunology*
;
Antibody Specificity/immunology*
;
Mice
;
Mice, Inbred BALB C
;
Enzyme-Linked Immunosorbent Assay
;
Fluorescent Antibody Technique, Indirect
5.Recent progress in the regulation of cellular immunity to erythrocyte homologous immunity.
Woxia HONG ; Changlin WU ; Chaopeng SHAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):559-563
Chronic anemia patients (such as thalassemia) often rely on long-term red blood cell transfusion to sustain life. However, alloimmune reactions against blood group antigens can pose serious risks to the patients' clinical treatment and survival. The regulatory mechanisms of transfusion-related alloimmunity are not yet well understood. For example, some patients, despite long-term transfusions, do not develop alloimmune reactions, while others produce alloantibodies against multiple blood group antigens, making transfusion therapy increasingly difficult. Red blood cell blood group alloimmunity involves various immune cells, including antigen-presenting cells and different T cells. Many studies are exploring the regulatory roles and even potential interventions. This article reviews the correlation between cellular immunity and red blood cell blood group antigens in alloimmune responses, and explores the interaction between the two, as well as their impact on immune responses.
Humans
;
Immunity, Cellular/immunology*
;
Erythrocytes/immunology*
;
Blood Group Antigens/immunology*
;
Animals
;
Isoantibodies/immunology*
;
T-Lymphocytes/immunology*
6.Clinical practice of treating platelet transfusion refractoriness based on platelet HLA gene bank matching.
Yan LIU ; Lili LIU ; Jingru SHAO ; Xiangmin NIE ; Peicong ZHAI
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):644-648
Objective To investigate the therapeutic efficacy of HLA-genotype matched platelet transfusion using a platelet donor database for severe platelet transfusion refractoriness (PTR) caused by HLA antigen-antibody incompatibility. Methods Using real-time quantitative PCR (qPCR) to identify he patient's HLA class I genotype, followed by searching the platelet donor database for matching donors, and selecting highly compatible donors for transfusion. Platelets with higher compatibility levels were prioritized for transfusion recommendations. Results Among the 19 patients studied, 7 patients identified donors with B2U or higher compatibility, 6 patients identified donors with BX or higher compatibility, and 6 patients did not find a suitable donor. The transfusion efficacy was evaluated by calculating the corrected count increment (CCI) 24 hours post-transfusion, and all transfusions were effective. Conclusion The optimal strategy to prevent and treat patients with severe platelet transfusion refractoriness is to ensure patients receive platelet transfusions that are matched to their HLA genes, and this approach significantly enhances transfusion efficacy.
Humans
;
Platelet Transfusion/adverse effects*
;
HLA Antigens/immunology*
;
Male
;
Middle Aged
;
Female
;
Adult
;
Blood Platelets/immunology*
;
Aged
;
Genotype
7.Preparation and application of CD318 monoclonal antibody.
Ke CHAO ; Ziyang WANG ; Jie ZHAO ; Meijia YANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):818-826
Objective To prepare CD318-specific monoclonal antibodies and evaluate their specificity, affinity, and application in immunological detection, laying the foundation for the development of CD318-targeted antibody drugs. MethodsCD318 protein was expressed and purified, and was used as an antigen to immunize mice, then mice with higher antiserum titers were screened. We prepared CD318-specific monoclonal antibodies through cell fusion and monoclonal screening, and the specificity, affinity, and application of the obtained monoclonal antibodies in immunological assays were evaluated. Then we constructed a CD318/CD3-targeting bispecific antibody and assessed its impact on T-cell cytotoxicity. Results Thirteen monoclonal antibodies were successfully generated, with the hybridoma clone 13-8-G2 exhibiting the highest titer, strongest specificity, and broadest applicability. The antibody was identified as an IgG1 isotype with a kappa light chain. The variable region of the light chain measured 318 bp, while the heavy chain variable region was 357 bp, yielding an affinity constant of approximately 7.68×109. The specificity of CD318 was confirmed using flow cytometry and immunofluorescence assays. Additionally, a CD318/CD3-targeting bispecific antibody was constructed using the variable regions of this CD318 monoclonal antibody, which demonstrated enhanced T-cell cytotoxicity. Conclusion High-affinity and highly specific CD318 monoclonal antibodies were successfully prepared, laying a foundation for the development of therapeutic antibodies targeting CD318.
Animals
;
Antibodies, Monoclonal/biosynthesis*
;
Mice
;
Antibodies, Bispecific/immunology*
;
Humans
;
Mice, Inbred BALB C
;
Antibody Specificity/immunology*
;
CD3 Complex/immunology*
;
Antigens, CD/genetics*
;
T-Lymphocytes/immunology*
;
Hybridomas/immunology*
;
Female
8.Recent advances in antibody-drug conjugates for metastatic castration-resistant prostate cancer.
Jiacheng XU ; Yutao MA ; Pengcheng HU ; Jiatao YAO ; Haichao CHEN ; Qi MA
Journal of Zhejiang University. Medical sciences 2025;54(5):685-693
Patients with metastatic castration-resistant prostate cancer (mCRPC) face poor prognoses due to tumor heterogeneity and drug resistance. Antibody-drug conjugates (ADCs) have been under development for over two decades for mCRPC treatment. Several clinical trials have demonstrated promising antitumor activity and acceptable safety profiles for ADCs in this setting. Among prostate-specific membrane antigen (PSMA)-targeted ADCs, ARX517 demonstrates superior safety and more significant prostate-specific antigen (PSA) reductions compared to earlier agents such as MLN2704, PSMA-ADC, and MEDI3726. ADCs targeting B7-H3, such as MGC018 and DB-1311, have also shown antitumor activity. ADCs targeting other antigens, including six-transmembrane epithelial antigen of the prostate (STEAP)1 (DSTP3086S), trophoblast cell surface antigen (TROP)2 (sacituzumab govitecan), and solute carrier (SLC) 44A4 (ASG-5ME), have shown preliminary antitumor activity in early trials but face challenges with insufficient efficacy or toxicity. Tisotumab vedotin (targeting tissue factor) has shown no significant therapeutic response in mCRPC. Meanwhile, disitamab vedotin (HER2-targeted), ABBV-969 and DXC008 (both dual PSMA/STEAP1-targeted) are currently under evaluation. Notably, an international multicenter phase Ⅲ clinical trial (NCT06925737) for mCRPC has been initiated in May 2025 for evaluating B7-H3-targeted ADC ifinatamab deruxtecan. This review summarizes recent advances in ADCs targeting key antigens in mCRPC (including PSMA, B7-H3, STEAP1, TROP2, SLC44A4, and others) and explores combination strategies, offering insights to inform the clinical management of mCRPC.
Humans
;
Prostatic Neoplasms, Castration-Resistant/pathology*
;
Male
;
Immunoconjugates/therapeutic use*
;
Glutamate Carboxypeptidase II/immunology*
;
Antibodies, Monoclonal, Humanized/therapeutic use*
;
B7 Antigens/immunology*
;
Neoplasm Metastasis
;
Prostate-Specific Antigen
;
Antigens, Neoplasm/immunology*
;
Antigens, Surface
;
Camptothecin/analogs & derivatives*
;
Oxidoreductases
9.A Retrospective Analysis of Irregular Erythrocyte Antibodies in the Blood Transfusion Department of People's Hospital of Xinjiang Uygur Autonomous Region from 2011 to 2022.
Ru-Bin WANG ; Hui-Jun LI ; Fei LI ; Wei CHEN
Journal of Experimental Hematology 2025;33(1):211-216
OBJECTIVE:
The distribution of irregular erythrocyte antibodies in the blood transfusion department of the People's Hospital of Xinjiang Uygur Autonomous Region from 2011 to 2022 and the relationship between irregular erythrocyte antibodies and ethnicity, gender, pregnancy history, blood transfusion history were retrospectively analyzed.
METHODS:
The irregular antibody screening data of patients who were proposed to receive blood transfusions in the clinical blood transfusion safety and blood management software of our hospital from 2011 to 2022 were collected for a retrospective study, and the distribution of irregular erythrocyte antibodies from 2011 to 2022 was analyzed. The relationship between ethnicity, gender, pregnancy history, blood transfusion history and the detection rate of irregular erythrocyte antibodies was further analyzed.
RESULTS:
From 2011 to 2022, the positive detection rate of irregular erythrocyte antibodies in 329 270 samples was 0.77%. Rh blood group (43.72%), Lewis blood group (9.90%) and MNS blood group (6.44%) accounted for the highest proportion of irregular erythrocyte antibody positive samples. In Rh blood group, the proportion of anti-D and anti-E in positive samples was the highest, with 19.09% and 16.06%, respectively. In MNS blood group, the proportion of anti-M in positive samples was the highest (5.46%). In Lewis blood group, the proportion of anti-Lea in positive samples was the highest (8.80%). Compared with other ethnic groups, the detection rates of irregular erythrocyte antibodies were significantly higher in Han, Hui and Uyghur ethnic groups (P < 0.001). Irregular erythrocyte antibody positive samples in Rh blood group system were concentrated in Han and Uygur ethnic groups. Compared to males and patients without a history of blood transfusion and pregnancy, female patients and patients with a history of blood transfusion and pregnancy had significantly higher detection rates of irregulart erythrocyte antibodies (P < 0.01).
CONCLUSION
The results of irregular antibody screening before blood transfusion showed that Rh blood group system antibodies were the main type of irregular antibodies, and the screening of various Rh blood group antigens should be strengthened. And the screening should be focused on female, patients with blood transfusion history and pregnancy history, as well as ethnic minority patients.
Humans
;
Retrospective Studies
;
Female
;
Blood Transfusion
;
China
;
Rh-Hr Blood-Group System/immunology*
;
Male
;
Erythrocytes/immunology*
;
Pregnancy
;
Isoantibodies/blood*
;
Blood Grouping and Crossmatching
;
Antibodies
;
Adult
;
Blood Group Antigens/immunology*
10.Investigation of Infection in HBV-Reactive Blood Donors in Wuhan.
Hao YANG ; Qin YU ; Ting-Ting XU ; Lei ZHAO
Journal of Experimental Hematology 2025;33(3):875-880
OBJECTIVE:
To investigate the pattern of hepatitis B virus (HBV) infection and the prevalence of hepatitis D virus (HDV) infection among voluntary blood donors who tested reactive for HBV in Wuhan, and to provide data support for the prevention and treatment of HBV and HDV infections.
METHODS:
Electrochemiluminescence (ECL) method was used to detect hepatitis B serological markers in the samples with HBsAg and/or HBV DNA reactivity, and the HBV infection in different groups was statistically analyzed. The HDV IgM and IgG antibodies were screened by ELISA, and the prevalence of HDV infection in the retained samples was analyzed.
RESULTS:
In 351 ELISA and/or nucleic acid test (NAT) reactive samples, the serological tests for hepatitis B revealed that 4 cases (1.1%) were positive for HBsAg, HBeAg, and anti-HBc, 182 cases (51.9%) were positive for HBsAg, anti-HBe, and anti-HBc, and 55 cases (15.7%) were negative for HBsAg but positive for anti-HBc. Among them, the HBsAg ELISA dual reagent reactive group (HBsAg R&R group) and the HBsAg ELISA single reagent reactive/HBV DNA reactive group (HBsAg R&NR/HBV DNA R group) had the highest rates of HBsAg(+), anti-HBe(+), and anti-HBc(+), accounting for more than 90% and 65%, respectively, followed by low activity of HBV acute infection or chronic carriers, accounting for about 5% and 20%, respectively. In the HBsAg R&NR/HBV DNA NR group, the combined proportion of individuals with anti-HBs single positive and all hepatitis B serological markers negative accounted for 78%, and those who were HBsAg negative but anti-HBc positive accounted for approximately 20%. In the HBsAg NR&NR/HBV DNA R group, there was nearly 9% of HBsAg(+), anti-HBe(+), and anti-HBc(+), the remaining were all HBsAg negative but anti-HBc positive, with a 100% anti-HBc positivity rate in this group. No HDV IgM or IgG antibodies were detected in the retained samples.
CONCLUSION
Blood donors with HBV-reactive results in blood screening exhibit multiple patterns of infection indicators. The prevalence rate of HDV infection among blood donors in Wuhan is extremely low. However, the risk of asymptomatic occult hepatitis B infection (OBI) blood donors being co-infected with HDV should not be overlooked in areas with high prevalence of HBV.
Humans
;
Blood Donors
;
Hepatitis B/blood*
;
China/epidemiology*
;
Adult
;
Male
;
Female
;
Hepatitis D/epidemiology*
;
Middle Aged
;
Hepatitis B virus/immunology*
;
Hepatitis B Antibodies/blood*
;
Young Adult
;
DNA, Viral/blood*
;
Hepatitis B Surface Antigens/blood*
;
Prevalence
;
Adolescent

Result Analysis
Print
Save
E-mail