1.Single-cell Analysis of CAR-T Cell Activation Reveals A Mixed T1/T2 Response Independent of Differentiation.
Iva XHANGOLLI ; Burak DURA ; GeeHee LEE ; Dongjoo KIM ; Yang XIAO ; Rong FAN
Genomics, Proteomics & Bioinformatics 2019;17(2):129-139
The activation mechanism of chimeric antigen receptor (CAR)-engineered T cells may differ substantially from T cells carrying native T cell receptor, but this difference remains poorly understood. We present the first comprehensive portrait of single-cell level transcriptional and cytokine signatures of anti-CD19/4-1BB/CD28/CD3ζ CAR-T cells upon antigen-specific stimulation. Both CD4 helper T (T) cells and CD8 cytotoxic CAR-T cells are equally effective in directly killing target tumor cells and their cytotoxic activity is associated with the elevation of a range of T1 and T2 signature cytokines, e.g., interferon γ, tumor necrotic factor α, interleukin 5 (IL5), and IL13, as confirmed by the expression of master transcription factor genes TBX21 and GATA3. However, rather than conforming to stringent T1 or T2 subtypes, single-cell analysis reveals that the predominant response is a highly mixed T1/T2 function in the same cell. The regulatory T cell activity, although observed in a small fraction of activated cells, emerges from this hybrid T1/T2 population. Granulocyte-macrophage colony stimulating factor (GM-CSF) is produced from the majority of cells regardless of the polarization states, further contrasting CAR-T to classic T cells. Surprisingly, the cytokine response is minimally associated with differentiation status, although all major differentiation subsets such as naïve, central memory, effector memory, and effector are detected. All these suggest that the activation of CAR-engineered T cells is a canonical process that leads to a highly mixed response combining both type 1 and type 2 cytokines together with GM-CSF, supporting the notion that polyfunctional CAR-T cells correlate with objective response of patients in clinical trials. This work provides new insights into the mechanism of CAR activation and implies the necessity for cellular function assays to characterize the quality of CAR-T infusion products and monitor therapeutic responses in patients.
Antigens
;
metabolism
;
CTLA-4 Antigen
;
metabolism
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Cytokines
;
metabolism
;
Cytotoxicity, Immunologic
;
drug effects
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
pharmacology
;
Humans
;
Lymphocyte Activation
;
drug effects
;
immunology
;
Lymphocyte Subsets
;
drug effects
;
metabolism
;
Phenotype
;
Proteomics
;
Receptors, Chimeric Antigen
;
metabolism
;
Single-Cell Analysis
;
methods
;
T-Lymphocytes, Regulatory
;
drug effects
;
metabolism
;
Th1 Cells
;
cytology
;
drug effects
;
Th2 Cells
;
cytology
;
drug effects
;
Transcription, Genetic
;
drug effects
;
Up-Regulation
;
drug effects
2.Response of macrophages in rat skeletal muscle after eccentric exercise.
Qun ZUO ; Shu-Chen WANG ; Xin-Kai YU ; Wei-Wei CHAO
Chinese Journal of Traumatology 2018;21(2):88-95
PURPOSEMacrophages are known to be important for healing numerous injured tissues depending on their functional phenotypes in response to different stimuli. The objective of this study was to reveal macrophage phenotypic changes involved in exercise-induced skeletal muscle injury and regeneration.
METHODSAdult male Sprague-Dawley rats experienced one session of downhill running (16° decline, 16 m/min) for 90 min. After exercise the blood and soleus muscles were collected at 0 h, 6 h, 12 h, 1 d, 2 d, 3 d, 1 w and 2 w after exercise, separately.
RESULTSIt was showed that CD68 M1 macrophages mainly infiltrated into muscle necrotic sites at 1-3 d, while CD163 M2 macrophages were present in muscles from 0 h to 2 weeks after exercise. Using transmission electron microscopy, we observed activated satellite cells 1 d after exercise. Th1-associated transcripts of iNOS and Ccl2 were inhibited post exercise, while COX-2 mRNA was dramatically increased 12 h after running (p < 0.01). M2 phenotype marker Arg-1 increased 12 h and 3 d (p < 0.05, p < 0.01) after exercise, and Clec10a and Mrc2 were up-regulated in muscles 12 h following exercise (p < 0.05, p < 0.05).
CONCLUSIONThe data demonstrate the dynamic patterns of macrophage phenotype in skeletal muscle upon eccentric exercise stimuli, and M1 and M2 phenotypes perform different functions during exercise-induced skeletal muscle injury and recovery.
Animals ; Antigens, CD ; analysis ; Antigens, Differentiation, Myelomonocytic ; analysis ; Macrophages ; physiology ; Male ; Muscle, Skeletal ; injuries ; pathology ; Myoglobin ; blood ; Phenotype ; Physical Conditioning, Animal ; Rats ; Rats, Sprague-Dawley ; Receptors, Cell Surface ; analysis
3.Regulatory T cells and asthma.
Sheng-Tao ZHAO ; Chang-Zheng WANG
Journal of Zhejiang University. Science. B 2018;19(9):663-673
Asthma is a chronic disease of airway inflammation due to excessive T helper cell type 2 (Th2) response. Present treatment based on inhalation of synthetic glucocorticoids can only control Th2-driven chronic eosinophilic inflammation, but cannot change the immune tolerance of the body to external allergens. Regulatory T cells (Tregs) are the main negative regulatory cells of the immune response. Tregs play a great role in regulating allergic, autoimmune, graft-versus-host responses, and other immune responses. In this review, we will discuss the classification and biological characteristics, the established immunomodulatory mechanisms, and the characteristics of induced differentiation of Tregs. We will also discuss the progress of Tregs in the field of asthma. We believe that further studies on the regulatory mechanisms of Tregs will provide better treatments and control strategies for asthma.
Antigens, CD/analysis*
;
Apyrase/analysis*
;
Asthma/immunology*
;
Cell Differentiation
;
Cytokines/metabolism*
;
Humans
;
Lymphocyte Transfusion
;
T-Lymphocytes, Regulatory/immunology*
4.Clinical value of detecting serum soluble CD163 level in patients with atrial fibrillation.
Shi-Mao ZHONG ; Yu-Hua QIN ; Zuo-Cha LI ; Ye-Sheng WEI
Journal of Southern Medical University 2016;36(10):1406-1409
OBJECTIVETo investigate the relationship between atrial fibrillation (AF) and serum soluble CD163.
METHODSA total of 336 patients with heart valve disease were included in this study, including 167 with AF and 169 with sinus rhythm. The clinical data were compared between the two grops, and Logistic regression analysis was used to identify the risk factors associated with AF.
RESULTSThe levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), tumor necrosis factor (TNF), interleukin-6 (IL - 6), high-sensitivity C-reactive protein (hs-CRP) and left atrial diameter (LAD) all differed significantly between the two groups (P<0.05). Serum soluble CD163 levels in AF patients were significantly higher than those in patients with sinus rhythm (P<0.05). Serum soluble CD163 was positively correlated with TNF (r=0.244, P=0.244), IL-6 (r=0.186, P=0.186), hs-CRP (r=0.183, P=0.183) and LAD (r=0.194, P=0.194) in patients with AF. Logistic regression analysis showed that LAD, IL-6, TNF, hs-CRP and CD163 were all associated with AF. ROC curve analysis showed that the area under curve of serum soluble CD163 was 0.861 in patients with AF (CI 95%: 0.820-0.901, P<0.01) with a sensitivity and a specificity of 80.8 and 76.9%, respectively.
CONCLUSIONSerum soluble CD163 level may be a risk factor for AF, and an increased soluble CD163 level may indicate active inflammation in AF patients.
Antigens, CD ; blood ; Antigens, Differentiation, Myelomonocytic ; blood ; Atrial Fibrillation ; blood ; C-Reactive Protein ; analysis ; Heart Atria ; pathology ; Humans ; Inflammation ; blood ; Interleukin-6 ; blood ; Lipoproteins, HDL ; blood ; Lipoproteins, LDL ; blood ; Receptors, Cell Surface ; blood ; Risk Factors ; Tumor Necrosis Factor-alpha ; blood
5.Diagnostic value of STAT6 immunohistochemistry in solitary fibrous tumor/meningeal hemangiopericytoma.
Xialing ZHANG ; Haixia CHENG ; Yun BAO ; Feng TANG ; Yin WANG
Chinese Journal of Pathology 2016;45(2):97-101
OBJECTIVETo investigate the diagnostic role of STAT6 immunohistochemistry in solitary fibrous tumors (SFT)/meningeal hemangiopericytomas (HPC).
METHODEvaluated the expression of STAT6, vimentin, CD34, EMA, PR, S-100, CD56, GFAP and Ki-67 in a cohort of 37 SFT/meningeal HPC, 30 meningiomas and 30 schwannomas by immunohistochemistry staining.
RESULTSAll SFT/meningeal HPC demonstrated nuclear positivity for STAT6, and the proportion of positive tumor cells ranged from 60% to 95%, with no significant difference cases.Vimentin was strongly positive in all cases. CD34, EMA and PR positivity was found in 32 cases, 1 case and 4 cases, respectively.S-100 protein, CD56 and GFAP were negative; Ki-67 labeling index was 1%-8%. However, the meningiomas and schwannomas were negative for STAT6.
CONCLUSIONSSTAT6 is a relatively specific biomarker for SFT/meningeal HPC, and may be used in the diagnosis and differential diagnosis of SFT/meningeal HPC, especially for the atypical cases, and allows the precise pathologic diagnosis of SFT/meningeal HPC.
Antigens, CD ; analysis ; Antigens, CD34 ; analysis ; Antigens, Differentiation, T-Lymphocyte ; analysis ; Biomarkers, Tumor ; analysis ; Diagnosis, Differential ; Glial Fibrillary Acidic Protein ; analysis ; Hemangiopericytoma ; chemistry ; diagnosis ; Humans ; Immunohistochemistry ; Ki-67 Antigen ; analysis ; Meningeal Neoplasms ; chemistry ; diagnosis ; Meningioma ; chemistry ; diagnosis ; Neurilemmoma ; chemistry ; diagnosis ; S100 Proteins ; analysis ; STAT6 Transcription Factor ; analysis ; Solitary Fibrous Tumors ; chemistry ; diagnosis ; Vimentin ; analysis
6.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism
7.Differentiation of Human Dental Pulp Stem Cells into Dopaminergic Neuron-like Cells in Vitro.
So Young CHUN ; Shay SOKER ; Yu Jin JANG ; Tae Gyun KWON ; Eun Sang YOO
Journal of Korean Medical Science 2016;31(2):171-177
We investigated the potential of human dental pulp stem cells (hDPSCs) to differentiate into dopaminergic neurons in vitro as an autologous stem cell source for Parkinson's disease treatment. The hDPSCs were expanded in knockout-embryonic stem cell (KO-ES) medium containing leukemia inhibitory factor (LIF) on gelatin-coated plates for 3-4 days. Then, the medium was replaced with KO-ES medium without LIF to allow the formation of the neurosphere for 4 days. The neurosphere was transferred into ITS medium, containing ITS (human insulin-transferrin-sodium) and fibronectin, to select for Nestin-positive cells for 6-8 days. The cells were then cultured in N-2 medium containing basic fibroblast growth factor (FGF), FGF-8b, sonic hedgehog-N, and ascorbic acid on poly-l-ornithine/fibronectin-coated plates to expand the Nestin-positive cells for up to 2 weeks. Finally, the cells were transferred into N-2/ascorbic acid medium to allow for their differentiation into dopaminergic neurons for 10-15 days. The differentiation stages were confirmed by morphological, immunocytochemical, flow cytometric, real-time PCR, and ELISA analyses. The expressions of mesenchymal stem cell markers were observed at the early stages. The expressions of early neuronal markers were maintained throughout the differentiation stages. The mature neural markers showed increased expression from stage 3 onwards. The percentage of cells positive for tyrosine hydroxylase was 14.49%, and the amount was 0.526 ± 0.033 ng/mL at the last stage. hDPSCs can differentiate into dopaminergic neural cells under experimental cell differentiation conditions, showing potential as an autologous cell source for the treatment of Parkinson's disease.
Animals
;
Brain/pathology
;
*Cell Differentiation/drug effects
;
Cells, Cultured
;
Culture Media/chemistry/pharmacology
;
Dental Pulp/*cytology
;
Dopaminergic Neurons/*cytology/*metabolism/pathology
;
Enzyme-Linked Immunosorbent Assay
;
Glial Fibrillary Acidic Protein/genetics/metabolism
;
Humans
;
Mice
;
Mice, Inbred ICR
;
Myelin Basic Protein/genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Stage-Specific Embryonic Antigens/genetics/metabolism
;
Stem Cells/*cytology/*metabolism/pathology
;
Tubulin/genetics/metabolism
;
Tyrosine 3-Monooxygenase/analysis/genetics/metabolism
8.Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers.
Ruth ALVAREZ ; Hye-Lim LEE ; Cun-Yu WANG ; Christine HONG
International Journal of Oral Science 2015;7(4):213-219
Mesenchymal stem cell (MSC)-mediated therapy has been shown to be clinically effective in regenerating tissue defects. For improved regenerative therapy, it is critical to isolate homogenous populations of MSCs with high capacity to differentiate into appropriate tissues. The utilization of stem cell surface antigens provides a means to identify MSCs from various tissues. However, few surface markers that consistently isolate highly regenerative MSCs have been validated, making it challenging for routine clinical applications and making it all the more imperative to identify reliable surface markers. In this study, we used three surface marker combinations: CD51/CD140α, CD271, and STRO-1/CD146 for the isolation of homogenous populations of dental mesenchymal stem cells (DMSCs) from heterogeneous periodontal ligament cells (PDLCs). Fluorescence-activated cell sorting analysis revealed that 24% of PDLCs were CD51(+)/CD140α(+), 0.8% were CD271(+), and 2.4% were STRO-1(+)/CD146(+). Sorted cell populations were further assessed for their multipotent properties by inducing osteogenic and chondrogenic differentiation. All three subsets of isolated DMSCs exhibited differentiation capacity into osteogenic and chondrogenic lineages but with varying degrees. CD271(+) DMSCs demonstrated the greatest osteogenic potential with strong induction of osteogenic markers such as DLX5, RUNX2, and BGLAP. Our study provides evidence that surface marker combinations used in this study are sufficient markers for the isolation of DMSCs from PDLCs. These results provide important insight into using specific surface markers for identifying homogenous populations of DMSCs for their improved utilization in regenerative medicine.
Adaptor Proteins, Signal Transducing
;
analysis
;
Adult
;
Aggrecans
;
analysis
;
Antigens, CD
;
analysis
;
Antigens, Surface
;
analysis
;
CD146 Antigen
;
analysis
;
Cell Differentiation
;
physiology
;
Cell Lineage
;
Cell Separation
;
methods
;
Cells, Cultured
;
Chondrogenesis
;
physiology
;
Collagen Type II
;
analysis
;
Core Binding Factor Alpha 1 Subunit
;
analysis
;
Flow Cytometry
;
methods
;
Homeodomain Proteins
;
analysis
;
Humans
;
Integrin alphaV
;
analysis
;
Mesenchymal Stromal Cells
;
cytology
;
physiology
;
Multipotent Stem Cells
;
cytology
;
physiology
;
Nerve Tissue Proteins
;
analysis
;
Osteogenesis
;
physiology
;
Periodontal Ligament
;
cytology
;
Receptor, Platelet-Derived Growth Factor alpha
;
analysis
;
Receptors, Nerve Growth Factor
;
analysis
;
SOX9 Transcription Factor
;
analysis
;
Time Factors
;
Transcription Factors
;
analysis
9.Single CD271 marker isolates mesenchymal stem cells from human dental pulp.
Ruth ALVAREZ ; Hye-Lim LEE ; Christine HONG ; Cun-Yu WANG
International Journal of Oral Science 2015;7(4):205-212
Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their capacity to differentiate into multiple lineages. In addition to MSCs isolated from bone marrow (BMSCs), adult MSCs are isolated from craniofacial tissues including dental pulp tissues (DPs) using various stem cell surface markers. However, there has been a lack of consensus on a set of surface makers that are reproducibly effective at isolating putative multipotent dental mesenchymal stem cells (DMSCs). In this study, we used different combinations of surface markers (CD51/CD140α, CD271, and STRO-1/CD146) to isolate homogeneous populations of DMSCs from heterogeneous dental pulp cells (DPCs) obtained from DP and compared their capacity to undergo multilineage differentiation. Fluorescence-activated cell sorting revealed that 27.3% of DPCs were CD51(+)/CD140α(+), 10.6% were CD271(+), and 0.3% were STRO-1(+)/CD146(+). Under odontogenic conditions, all three subsets of isolated DMSCs exhibited differentiation capacity into odontogenic lineages. Among these isolated subsets of DMSCs, CD271(+) DMSCs demonstrated the greatest odontogenic potential. While all three combinations of surface markers in this study successfully isolated DMSCs from DPCs, the single CD271 marker presents the most effective stem cell surface marker for identification of DMSCs with high odontogenic potential. Isolated CD271(+) DMSCs could potentially be utilized for future clinical applications in dentistry and regenerative medicine.
Adult
;
Adult Stem Cells
;
cytology
;
Antigens, CD
;
analysis
;
Antigens, Surface
;
analysis
;
Biomarkers
;
analysis
;
CD146 Antigen
;
analysis
;
Cell Culture Techniques
;
Cell Differentiation
;
physiology
;
Cell Lineage
;
Cell Separation
;
methods
;
Cells, Cultured
;
Chondrogenesis
;
physiology
;
Dental Pulp
;
cytology
;
Flow Cytometry
;
methods
;
Humans
;
Integrin alphaV
;
analysis
;
Mesenchymal Stromal Cells
;
cytology
;
Multipotent Stem Cells
;
cytology
;
Nerve Tissue Proteins
;
analysis
;
Odontogenesis
;
physiology
;
Receptor, Platelet-Derived Growth Factor alpha
;
analysis
;
Receptors, Nerve Growth Factor
;
analysis
10.Construction of expression vector pLCK-CD69-IRES-EGFP and generation of CD69 transgenic mice.
Jing WANG ; Yan HU ; Bi-qin TAN ; Jia-jia WANG ; Meng-ting ZHAO ; Qin-jie WENG ; Di-feng ZHU ; Hui-ying WANG
Journal of Zhejiang University. Medical sciences 2015;44(5):511-516
OBJECTIVETo construct the expression vector pLCK-CD69-IRES-EGFP that contains mouse cell surface activation protein CD69 and enhanced green fluorescent protein(EGFP),and to generate CD69 transgenic mice based on this vector.
METHODSFirst, RNA was extracted from mouse lung tissue and cDNA was synthesized via reverse transcription. PCR primer was designed through the PubMed searching, then mouse CD69 DNA fragment was amplified with PCR. Second, this DNA fragment was subcloned to the pInsulater-LCK-IRES-EGFP plasmid and constructed the transgenic vector after the verification of nucleotide sequence. Third, the expression vector was then transfected into 293 T cells and its expression in 293 T cells was observed under fluorescence microscope. Last, microinjection was performed to transfer the expression vector pLCK-CD69-IRES-EGFP into fertilized eggs, which were implanted into pseudo-pregnant recipient mice. After birth the tail samples of the pups were obtained for the purpose of genotyping to determine the transgenic founders. Fluorescence microscope and flow cytometer were used to measure the expression of CD69 on cells.
RESULTSThe construction of the expression vector pLCK-CD69-IRES-EGFP was verified by enzyme digestion and DNA sequencing. The transfected 293 T cell showed expression of the protein under fluorescence microscope. Identification of PCR for the tail tissue of the pups confirmed the present of CD69 transgene and resting lymphocytes demonstrated the expression of CD69.
CONCLUSIONThe construction of expression vector pLCK-CD69-IRES-EGFP and generation of CD69 transgenic mice have been successfully processed, which lays a foundation of the solid pattern studies in inflammatory diseases.
Animals ; Antigens, CD ; genetics ; Antigens, Differentiation, T-Lymphocyte ; genetics ; DNA, Complementary ; Genetic Vectors ; Genotype ; Green Fluorescent Proteins ; genetics ; Lectins, C-Type ; genetics ; Mice ; Mice, Transgenic ; Plasmids ; Polymerase Chain Reaction ; Sequence Analysis, DNA ; Transfection

Result Analysis
Print
Save
E-mail