1.Construction of NK cell-conditional Cd226 knockout mice and preliminary investigation of their role in ulcerative colitis.
Jianchun LYU ; Zichan GUO ; Yazhen WANG ; Ziyan CHEN ; Zhengxiang ZHANG ; Lihua CHEN
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):488-494
Objective To generate and characterize natural killer cell (NK cell)-conditional Cd226 gene knockout mice using Cre-loxP technology, and to explore the role of CD226 on NK cells in alleviating intestinal inflammation in a murine model of ulcerative colitis (UC). Methods NK cell-conditional Cd226 gene knockout mice were generated by crossing loxP-flanked Cd226 mice with Ncr1-Cre mice via the Cre-loxP system. Polymerase chain reaction (PCR) and agarose gel electrophoresis were used for genotyping. A UC model was established by dextran sulfate sodium (DSS) induction. Flow cytometry was performed to analyze CD226 expression levels on NK cells and the infiltration of related immune cells in colon tissues. Hematoxylin-eosin (HE) staining was performed to assess the degree of colonic inflammation. Results DNA gel electrophoresis and flow cytometry confirmed the successful generation of NK cell-specific Cd226 knockout mice. After conditional knockout of Cd226 in NK cells, inflammation in the UC mouse model was alleviated. Flow cytometry results showed a reduced proportion of NK cells in peripheral blood and the colon lamina propria, while HE staining demonstrated attenuated inflammatory responses. Conclusion Specific knockout of Cd226 in NK cells mitigates intestinal inflammation in UC mice by reducing NK cell numbers and inhibiting their pro-inflammatory functions.
Animals
;
Colitis, Ulcerative/pathology*
;
Killer Cells, Natural/metabolism*
;
Mice, Knockout
;
T Lineage-Specific Activation Antigen 1
;
Antigens, Differentiation, T-Lymphocyte/genetics*
;
Mice
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Male
2.Research on the inhibitory effects of evodiamine on activated T cell proliferation.
Jianan TANG ; Xingyan LUO ; Jingjing HE ; Xiaoxin ZENG ; Yang LIU ; Yi LAI
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):524-530
Objective To explore the characteristics of the inhibitory effect of Evodiamine on the proliferation of activated T cells. Methods Mononuclear cells from peripheral blood (PBMCs) were obtained from healthy donors through density gradient centrifugation, and T cells were subsequently purified by using immunomagnetic bead separation. T cell activation was induced by employing anti-human CD3 and anti-human CD28 antibodies. T cells were treated with different concentrations of EVO (0.37, 1.11, 3.33, and 10)μmol/L. Flow cytometry was applied to evaluate the proliferation index, apoptosis rate, viability, CD25 expression levels, and cell cycle distribution of T cells. The expression levels of cytokines IL-2, IL-17A, IL-4, and IL-10 were quantified by using ELISA. Results 1.11, 3.33 and 10 μmol/L EVO effectively inhibited the proliferation of activated T cells, with an IC50 of (1.5±0.3)μmol/L. EVO did not induce apoptosis in activated T cells and affect the survival rate of resting T cells. EVO did not affect the expression of CD25 and the secretion of IL-2 in activated T cells. EVO arrested the T cell cycle at the G2/M phase, resulting in an increase in G2/M phase cells, and exhibited a concentration-dependent effect. EVO did not affect the secretion of IL-4, IL-10 by activated T cells, but significantly inhibited the secretion of IL-17A. Conclusion EVO did not significantly affect the activation process of T cells but inhibited T cell proliferation by arresting the cell cycle at the G2/M phase and significantly suppressed the secretion of the pro-inflammatory cytokine IL-17A, which suggests that EVO has the potential to serve as a lead compound for the development of low-toxicity and high-efficiency immunosuppressants and elucidates the mechanisms underlying the anti-inflammatory and immunomodulatory effects of the traditional Chinese medicine Evodia rutaecarpa.
Humans
;
Cell Proliferation/drug effects*
;
Quinazolines/pharmacology*
;
T-Lymphocytes/metabolism*
;
Lymphocyte Activation/drug effects*
;
Apoptosis/drug effects*
;
Interleukin-4/metabolism*
;
Interleukin-10/metabolism*
;
Interleukin-2 Receptor alpha Subunit/metabolism*
;
Interleukin-17/metabolism*
;
Interleukin-2/metabolism*
;
Cell Cycle/drug effects*
;
Cells, Cultured
3.Preparation and application of CD318 monoclonal antibody.
Ke CHAO ; Ziyang WANG ; Jie ZHAO ; Meijia YANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):818-826
Objective To prepare CD318-specific monoclonal antibodies and evaluate their specificity, affinity, and application in immunological detection, laying the foundation for the development of CD318-targeted antibody drugs. MethodsCD318 protein was expressed and purified, and was used as an antigen to immunize mice, then mice with higher antiserum titers were screened. We prepared CD318-specific monoclonal antibodies through cell fusion and monoclonal screening, and the specificity, affinity, and application of the obtained monoclonal antibodies in immunological assays were evaluated. Then we constructed a CD318/CD3-targeting bispecific antibody and assessed its impact on T-cell cytotoxicity. Results Thirteen monoclonal antibodies were successfully generated, with the hybridoma clone 13-8-G2 exhibiting the highest titer, strongest specificity, and broadest applicability. The antibody was identified as an IgG1 isotype with a kappa light chain. The variable region of the light chain measured 318 bp, while the heavy chain variable region was 357 bp, yielding an affinity constant of approximately 7.68×109. The specificity of CD318 was confirmed using flow cytometry and immunofluorescence assays. Additionally, a CD318/CD3-targeting bispecific antibody was constructed using the variable regions of this CD318 monoclonal antibody, which demonstrated enhanced T-cell cytotoxicity. Conclusion High-affinity and highly specific CD318 monoclonal antibodies were successfully prepared, laying a foundation for the development of therapeutic antibodies targeting CD318.
Animals
;
Antibodies, Monoclonal/biosynthesis*
;
Mice
;
Antibodies, Bispecific/immunology*
;
Humans
;
Mice, Inbred BALB C
;
Antibody Specificity/immunology*
;
CD3 Complex/immunology*
;
Antigens, CD/genetics*
;
T-Lymphocytes/immunology*
;
Hybridomas/immunology*
;
Female
4.Study on the effect of ATPIF1 on the anti-tumor activity of CAR-NK92 cells by regulating glycolytic capacity.
Biao LIU ; Xue GONG ; Biliang HU ; Chunlei GUO ; Genshen ZHONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):865-874
Objective To investigate the effect of ATP synthase inhibitory factor 1 (ATPIF1) on the antitumor activity of chimeric antigen receptor (CAR)-NK92 cells. Methods HER2-targeted CAR-NK92 cells with ATPIF1 overexpression or knockdown were constructed. CAR-positive expression rate was detected by flow cytometry. Cell proliferation capacity was measured using CCK-8 assay. Glycolytic capacity was analyzed by Seahorse metabolic analyzer. Mitochondrial membrane potential levels were detected using JC-1 probe. Target cell lysis rate was evaluated by firefly luciferase reporter assay. Expression levels of CD107a, natural-killer group 2 member D (NKG2D), granzyme B (GzmB), perforin, and interleukin 2 (IL-2) were detected via flow cytometry. Quantitative real-time PCR was used to measure the expression of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), tumor necrosis factor α (TNF-α), ATPIF1, and hexokinase 1 (HK1). The impact of glycolytic inhibition by 2-Deoxy-D-glucose (2-DG) on CAR-NK92 antitumor capacity was examined. Results Successfully generated HER2-targeting control CAR-NK92 cells, as well as ATPIF1-overexpressing and ATPIF1 knockdown CAR-NK92 cells. The ATPIF1-overexpressing CAR-NK92 cells showed significantly enhanced target cell lysis rate, elevated expression levels of NKG2D and CD107a, increased secretion capacities of Granzyme B (GzmB) and IL-2, and upregulated mRNA expression levels of IFIT1 and TNF-α, while ATPIF1-knockdown cells exhibited opposite effects. ATPIF1 overexpression induced metabolic reprogramming in CAR-NK92 cells, manifested by significantly decreased mitochondrial membrane potential (δpsim), markedly upregulated HK1 mRNA expression, and enhanced basal glycolysis and glycolytic capacity. After glycolysis inhibition with 2-DG (5 μmol/L), both ATPIF1-overexpressing and knockdown CAR-NK92 cells showed no significant differences in NKG2D and CD107a expression levels compared to control cells. Conclusion ATPIF1 regulates the antitumor activity of CAR-NK92 cells through modulating glycolytic metabolism. Overexpression of ATPIF1 can enhance the antitumor efficacy of CAR-NK92 cells.
Humans
;
Glycolysis
;
Killer Cells, Natural/metabolism*
;
Receptors, Chimeric Antigen/immunology*
;
Granzymes/genetics*
;
Hexokinase/metabolism*
;
Cell Line, Tumor
;
Interleukin-2/genetics*
;
Cell Proliferation
;
NK Cell Lectin-Like Receptor Subfamily K/genetics*
;
Membrane Potential, Mitochondrial
5.Knocking Out <i>DNMT1i> Enhances the Inhibitory Effect of NK Cells on Acute Myeloid Leukemia.
Kun WU ; Jia-Li HUANG ; Shen-Ju CHENG ; Yan-Hong LI ; Yun ZENG ; Ming-Xia SHI
Journal of Experimental Hematology 2025;33(3):653-659
OBJECTIVE:
To explore the effect and mechanism of DNA methyltransferase 1 (DNMT1) knockout on the inhibition of acute myeloid leukemia (AML) by natural killer (NK) cells.
METHODS:
The peripheral blood NK cells of AML patients and controls were collected, and the mRNA and protein level of DNMT1 were measured by PCR and Western blot, respectively. The <i>DNMT1i> knockout mice were constructed to obtain NKDNMT1-/- cells. The NK cells were stimulated with interleukin (IL)-12, IL-15, and IL-18 to construct memory NK cells, and then the interferon-γ (IFN-γ) levels were measured by ELISA. After co-culturing with memory NK cells and HL60 cells, the killing effect of NKDNMT1-/- cells on HL60 cells was detected by LDH assay. Then, the HL60 cell apoptosis and NK cell NKG2D level were measured by flow cytometry. The perforin and granzyme B protein levels of NK cells were measured by Western blot. The AML model mice were constructed by injecting HL60 cells into the tail vein, meanwhile, memory NK cells were also injected, and then the mouse weights, CD33 positive rates, and survival time were detected.
RESULTS:
The mRNA and protein levels of DNMT1 in NK cells of AML patients were significantly higher than those in the control group (both <i>Pi> < 0.01), while the IFN-γ level induced by interleukin was significantly lower than that in the control group (<i>Pi> < 0.05). Compared with NKDNMT1+/+ cells, the ability of NKDNMT1-/- cells to secrete IFN-γ after interleukin stimulation was significantly increased (<i>Pi> < 0.05). The killing and apoptosis-inducing effects of NKDNMT1-/- cells on HL60 cells were significantly stronger than those of NKDNMT1+/+ cells (both <i>Pi> < 0.05). The NKG2D level and expression of perforin and granzyme B of NKDNMT1-/- cells were significantly increased compared with NKDNMT1+/+ cells (all <i>Pi> < 0.05). Compared with AML mice injected with NKDNMT1+/+ cells, AML mice injected with NKDNMT1-/- cells showed significantly increased body weight, decreased CD33 positive rate, and prolonged survival time (all <i>Pi> < 0.05).
CONCLUSION
Knocking out <i>DNMT1i> can enhance the inhibitory effect of NK cells on AML, which may be related to enhancing NK cell memory function.
Killer Cells, Natural/metabolism*
;
Animals
;
Leukemia, Myeloid, Acute
;
Humans
;
DNA (Cytosine-5-)-Methyltransferase 1
;
Mice
;
Mice, Knockout
;
HL-60 Cells
;
Apoptosis
;
Interferon-gamma/metabolism*
;
Granzymes/metabolism*
;
Perforin/metabolism*
;
NK Cell Lectin-Like Receptor Subfamily K/metabolism*
6.Advances in Targeted Therapy for Advanced Non-small Cell Lung Cancer with HER2 Mutation.
Chinese Journal of Lung Cancer 2025;28(8):612-620
Human epidermal growth factor receptor 2 (HER2) mutations play a role as a driver gene in non-small cell lung cancer (NSCLC). Patients with advanced NSCLC harboring HER2 mutations exhibit poor responses to conventional chemotherapy and immunotherapy, hence targeted therapies against HER2 are under extensive investigation. This review analyzes the biological characteristics of HER2, an overview of clinical trials for targeted therapy drugs, including monoclonal antibodies, tyrosine kinase inhibitors (TKIs), and antibody-drug conjugate, and research directions for drug resistance in NSCLC. Currently, Pyrotinib and Trastuzumab deruxtecan have been approved for the treatment of advanced NSCLC with HER2 mutations, suitable for patients who have failed standard therapy, which is far from meeting the clinical demands. Novel selective HER2 TKIs are gradually emerging. Future exploration trends are gradually shifting from single drugs to combination strategies, and are exploring more precise selection strategies as well as research on resistance mechanisms. These studies will provide a theoretical basis for clinical treatment strategies for advanced NSCLC with HER2 mutations, promoting the development of personalized therapy.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Lung Neoplasms/pathology*
;
Receptor, ErbB-2/metabolism*
;
Mutation
;
Molecular Targeted Therapy
;
Protein Kinase Inhibitors/therapeutic use*
;
Antineoplastic Agents/therapeutic use*
7.The increased risk of exposure to fine particulate matter for depression incidence is mediated by elevated TNF-R1: the Healthy Aging Longitudinal Study.
Ta-Yuan CHANG ; Ting-Yu ZHUANG ; Yun-Chieh YANG ; Chih-Cheng HSU ; Wan-Ju CHENG
Environmental Health and Preventive Medicine 2025;30():49-49
BACKGROUND:
Depression among older adults is an important public health issue, and air and noise pollution have been found to contribute to exacerbation of depressive symptoms. This study examined the association of exposure to air and noise pollutants with clinically-newly-diagnosed depressive disorder. The mediating role of individual pro-inflammatory markers was explored.
METHODS:
We linked National Health Insurance claim data with 2998 healthy community-dwellers aged 55 and above who participated in the Healthy Aging Longitudinal Study between 2009 and 2013. Newly diagnosed depressive disorder was identified using diagnostic codes from the medical claim data. Pollutants were estimated using nationwide land use regression, including PM2.5 and PM10, carbon monoxide, ozone, nitrogen dioxide, sulfur dioxide, and road traffic noise. Cox proportional hazard models were employed to examine the association between pollutants and newly developed depressive disorders. The mediating effect of serum pro-inflammatory biomarkers on the relationship was examined.
RESULTS:
Among the 2998 participants, 209 had newly diagnosed depressive disorders. In adjusted Cox proportional hazard models, one interquartile range increase in PM2.5 (8.53 µg/m3) was associated with a 17.5% increased hazard of developing depressive disorders. Other air pollutants and road traffic noise were not linearly associated with depressive disorder incidence. Levels of serum tumor necrosis factor receptor 1 mediated the relationship between PM2.5 and survival time to newly onset depressive disorder.
CONCLUSION
PM2.5 is related to an increased risk of newly developed depressive disorder among middle-aged and older adults, and the association is partially mediated by the pro-inflammatory marker TNF-R1.
Humans
;
Particulate Matter/analysis*
;
Male
;
Female
;
Middle Aged
;
Longitudinal Studies
;
Aged
;
Incidence
;
Air Pollutants/analysis*
;
Environmental Exposure/adverse effects*
;
Taiwan/epidemiology*
;
Receptors, Tumor Necrosis Factor, Type I/blood*
;
Proportional Hazards Models
;
Biomarkers/blood*
;
Depression/epidemiology*
;
Aged, 80 and over
;
Depressive Disorder/chemically induced*
;
Risk Factors
;
Air Pollution/adverse effects*
8.Biological activity and antitumor effect of long-acting recombinant human interleukin-2 drug.
Xuejun LIANG ; Fengxia ZHANG ; Ting JIN ; Jingjing ZHU
Journal of Peking University(Health Sciences) 2025;57(2):253-261
OBJECTIVE:
To investigate the biological activity and antitumor effect of pegylated recombinant human interleukin 2 (PEG-rhIL-2) obtained by site-specific conjugation of polyethylene glycol (PEG) with non-natural amino acids, and to explore its antitumor mechanism.
METHODS:
The binding activities of PEG-rhIL-2 at three different sites (T41, Y45, and V91) to human interleukin 2 receptors α (IL-2Rα) and β (IL-2Rβ) and were detected by surface plasmon resonance (SPR) technology. Western blot was used to detect the levels of the Janus kinase-signal transducer and activator of transcription 5 (JAK-STAT5) signaling pathway activated by different doses of rhIL-2 and PEG-rhIL-2 in CTTL-2 and YT cells. Blood was collected after a single administration in mice to detect the drug concentration at different time points and evaluate the pharmacokinetic parameters of Y45-PEG-rhIL-2. Mouse hepatoma cell line Hepa1-6, pancreatic cancer cell line Pan-02, and colon cancer cell line MC-38 were selected. Tumor models were constructed in C57BL/6 mice. Different doses of Y45-PEG-rhIL-2 and excipient control were administrated respectively to evaluate the tumor suppression effect of the drug. In the MC-38 colon cancer model, the tumor suppression effect of Y45-PEG-rhIL-2 combined with anti-programmed death-1 (PD-1) monoclonal antibody was evaluated. Hepa1-6 mouse tumor models were constructed and rhIL-2, Y45-rhIL-2 and Y45-PEG-rhIL-2 were administrated respectively. The proportion of tumor-infiltrating lymphocytes was analyzed by flow cytometry.
RESULTS:
The SPR detection results showed that the binding activities of PEG-rhIL-2 to IL-2Rα/IL-2Rβ were both reduced. The affinity of Y45-PEG-rhIL-2 to IL-2Rα was reduced to approximately 1/250, and its affinity to IL-2Rβ was reduced to 1/3. Western blot results showed that the activity of Y45-PEG-rhIL-2 in stimulating JAK-STAT5 signaling in CTLL-2 cells expressing heterotrimeric IL-2 receptor complex IL-2Rαβγwas reduced to approximately 1/300, while its activity in YT cells expressing heterodimeric IL-2 receptor complex IL-2Rβγwas reduced to approximately 1/3. The pharmacokinetic evaluation after a single dose in the mice showed that the elimination half-life of Y45-PEG-rhIL-2 was 17.7 h. Y45-PEG-rhIL-2 has pharmacokinetic characteristics superior to those of rhIL-2. Y45-PEG-rhIL-2 showed dose-dependent tumor suppression activity, and the combination of Y45-PEG-rhIL-2 and anti-PD-1 antibody had a better tumor-inhibiting effect than the single use of Y45-PEG-rhIL-2 or anti-PD-1 antibody. Flow cytometry analysis demonstrated that 72 h after the administration of Y45-PEG-rhIL-2, the proportion of tumor-infiltrating cytotoxic T lymphocytes (CD8+T cells) increased by 86.84%. At 120 h after administration, the ratio of CD8+T cells to regulatory T cells (Treg) increased by 75.10%.
CONCLUSION
Y45-PEG-rhIL-2 obtained by site-specific conjugation <i>viai> non-natural amino acids changed its receptor binding activity and inhibited tumor growth in dose-dependent manner in multiple tumor models by regulating CD8+T cells.
Interleukin-2/pharmacokinetics*
;
Animals
;
Mice
;
Humans
;
Recombinant Proteins/pharmacology*
;
Polyethylene Glycols/chemistry*
;
Cell Line, Tumor
;
Antineoplastic Agents/pharmacokinetics*
;
Signal Transduction/drug effects*
;
STAT5 Transcription Factor/metabolism*
;
Interleukin-2 Receptor alpha Subunit/metabolism*
;
Interleukin-2 Receptor beta Subunit/metabolism*
9.Impact of concurrent use of goserelin on the efficacy of neoadjuvant chemotherapy in young breast cancer patients.
Miaoyu LIU ; Siyuan WANG ; Lin PEI ; Shu WANG
Journal of Peking University(Health Sciences) 2025;57(2):291-297
OBJECTIVE:
To explore the effect of concurrent administration of goserelin for ovarian function protection on the pathological complete response (pCR) rate and objective response rate (ORR) of neoadjuvant chemotherapy (NAC) in young breast cancer patients.
METHODS:
The study enrolled breast cancer patients aged 18-45 with clinical stages ⅡA~ⅢC from January 2016 to May 2020. According to patients' willingness, they were divided into two groups: Those who chose to receive goserelin to protect ovarian function during NAC (goserelin group) and those who did not (chemotherapy group). The pCR rate and ORR were compared between the two groups, and subgroup analysis was conducted for patients with different molecular subtypes.
RESULTS:
A total of 93 patients were included in this study (31 in the goserelin group and 62 in the chemotherapy group). After propensity score weighting (PSW) adjustment, baseline data such as age, preoperative clinical stage, postoperative pathological stage, pa-thological type, hormone receptor status, human epidermal growth factor receptor 2 (HER2) and Ki-67 expression, molecular subtypes, and chemotherapy regimens were well-matched between the two groups. There was no significant difference in the pCR rate between the goserelin group and the chemotherapy group, with rates of 29.0% and 25.8%, respectively (<i>Pi>=0.741). Similarly, there was no significant difference in ORR between the two groups (90.3% <i>vsi>. 87.1%, <i>Pi>=0.746). Subgroup analysis revealed that among the patients with hormone receptor-positive tumors, there were no significant differences in pCR rate (6.3% <i>vsi>. 7.7%, <i>Pi>=0.852) or ORR (87.5% <i>vsi>. 82.1%, <i>Pi>=0.839) between the goserelin and chemotherapy groups. Among the patients with hormone receptor-negative tumors, there were also no significant differences in pCR rate (53.3% <i>vsi>. 56.5%, <i>Pi>=0.847) or ORR (93.3% <i>vsi>. 95.7%, <i>Pi>=0.975) between the two groups. One year after the completion of chemotherapy, the incidence of chemotherapy-induced amenorrhea (CIA) was significantly lower in the goserelin group compared with the chemotherapy group (9.5% <i>vsi>. 33.3%, <i>Pi>=0.036).
CONCLUSION
For young breast cancer patients with clinical stages of ⅡA~ⅢC, there was no statistical difference in pCR rate and ORR whether or not using goserelin during NAC. However, it is still necessary to expand the sample size and carry out a longer follow-up to evaluate the effect of goserelin on the long-term survival of young patients.
Humans
;
Goserelin/administration & dosage*
;
Female
;
Breast Neoplasms/pathology*
;
Neoadjuvant Therapy/methods*
;
Adult
;
Middle Aged
;
Young Adult
;
Adolescent
;
Chemotherapy, Adjuvant
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Antineoplastic Agents, Hormonal/therapeutic use*
;
Treatment Outcome
;
Receptor, ErbB-2
10.Expert consensus on diagnosis and treatment of advanced non-small cell lung cancer with HER-2 alterations (2025 edition).
Chinese Journal of Oncology 2025;47(9):830-839
Mutations in the human epidermal growth factor receptor 2 (HER-2) gene are recognized as significant but relatively rare driver alterations in non-small cell lung cancer (NSCLC). These mutations predominantly manifest as gene mutation, amplification, and protein overexpression, with an estimated prevalence from 2.8% to 15.4% among NSCLC patients in China. Research indicates that HER-2 mutations, particularly exon 20 insertions (ex20ins), are strongly correlated with aggressive tumor biology, poor prognosis, and limited responsiveness to immunotherapy, thereby exhibiting characteristics of "cold tumors". Overexpression and amplification of HER-2 are also indicative of a heightened risk of chemotherapy resistance and unfavorable survival outcomes, suggesting a distinct molecular subtype with unique biological behaviors. In recent years, novel antibody-drug conjugates (ADCs), particularly trastuzumab deruxtecan (T-DXd), have demonstrated groundbreaking efficacy in HER-2-mutant advanced NSCLC patients. These ADCs have shown significant clinical benefits, including high objective response rates and progression-free survival advantages, making T-DXd the first targeted therapy approved for this patient population globally. Additionally, ADCs have exhibited therapeutic potential in patients with HER-2 overexpression, thus broadening the scope of their indications. To standardize the clinical diagnosis and treatment of HER-2 variant NSCLC, the Chinese Anti-cancer Association convened multidisciplinary experts from oncology, pulmonology, thoracic surgery, pathology, and molecular diagnostics to develop this consensus based on the latest evidences from both domestic and international studies, coupled with China's clinical practice experience. This consensus focuses on the molecular characteristics, clinical significance, diagnostic strategies, treatment options, and safety management of HER-2 alterations, addressing ten critical clinical questions in a systematic manner. It is recommended that HER-2 status be routinely tested at initial diagnosis, disease progression, or recurrence in NSCLC. Mutation detection should prioritize next-generation sequencing (NGS), while protein overexpression may be assessed using immunohistochemistry (IHC) standards for gastric cancer. Fluorescence in situ hybridization (FISH) is recommended for detecting HER-2 amplification. Regarding treatment, for HER-2-mutant patients, first-line therapy may involve chemotherapy with or without immune checkpoint inhibitors (ICIs), similar to treatment approaches for driver-gene negative populations. Upon failure of first-line treatment, trastuzumab deruxtecan, may be considered as alternative therapeutic options. For patients with HER-2 overexpression, ADCs should be considered after failure of standard systemic therapy. However, the management of HER-2 amplification remains insufficiently supported by evidence, necessitating a cautious, individualized approach. The consensus also includes detailed recommendations for screening and managing adverse effects associated with ADCs, such as interstitial lung disease (ILD), emphasizing the crucial role of safety management in ensuring treatment efficacy. The publication of this consensus aims to drive the standardization of molecular diagnosis and treatment pathways for HER-2 variant NSCLC, improve clinical outcomes and quality of life for patients, and facilitate the implementation of personalized precision treatment strategies.
Humans
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
Lung Neoplasms/pathology*
;
Receptor, ErbB-2/metabolism*
;
Mutation
;
Immunoconjugates/therapeutic use*
;
Consensus
;
Trastuzumab/therapeutic use*
;
Camptothecin/analogs & derivatives*

Result Analysis
Print
Save
E-mail