1.Mycobacterium tuberculosis PPE59 promotes its survival in host cells by regulating cytokine secretion of Mycobacterium smegmatis infected macrophages.
Chutong WANG ; Fangzheng GUO ; Yamin SONG ; Jing WEI ; Minying LI ; Hongtao WANG ; Tao XU
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):875-881
Objective To study the effect of Mycobacterium tuberculosis (Mtb) Pro-Pro-Glu-59 (PPE59) protein on the biological function of Mycobacterium smegmatis (Ms) and the regulation of host cell immune response. Methods PPE59 gene fragment was obtained by PCR amplification, cloned into pALACE, constructed into recombinant pALACE-PPE59 vector, and electro-transformed into Ms. Western blot was applied to analyse PPE59 expression and subcellular localization. The survival of Ms_Vec and Ms_PPE59 under low acid (pH=3 and pH=5) conditions and active surface pressure sodium dodecyl sulfate (SDS) conditions and their intracellular survival in macrophages were analyzed. ELISA was used to detect the cytokine (IL-1β, IL-6, IL-12, TNF-α and IL-10) expression levels of Ms_Vec and Ms_PPE59 infected macrophages. Results PPE59 protein localized to the cell wall of Ms can enhance the acid-resistance and anti-SDS effect of Ms, which is conducive to the survival of Ms in macrophages. PPE59 significantly decreased the secretion levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-12 and TNF-α), and promoted the secretion levels of anti-inflammatory cytokine (IL-10). Conclusion PPE59 enhances the survival ability of Ms under low acid and SDS pressure and promotes its intracellular survival by regulating the cytokine secretion levels.
Mycobacterium smegmatis/metabolism*
;
Macrophages/metabolism*
;
Cytokines/metabolism*
;
Mycobacterium tuberculosis/metabolism*
;
Bacterial Proteins/metabolism*
;
Animals
;
Mice
;
Antigens, Bacterial/metabolism*
2.Virulence genes of Streptococcus mutans and dental caries
International Journal of Oral Biology 2019;44(2):31-36
Streptococcus mutans is one of the important bacteria that forms dental biofilm and cause dental caries. Virulence genes in S. mutans can be classified into the genes involved in bacterial adhesion, extracellular polysaccharide formation, biofilm formation, sugar uptake and metabolism, acid tolerance, and regulation. The genes involved in bacterial adhesion are gbps (gbpA, gbpB, and gbpC) and spaP. The gbp genes encode glucan-binding protein (GBP) A, GBP B, and GBP C. The spaP gene encodes cell surface antigen, SpaP. The genes involved in extracellular polysaccharide formation are gtfs (gtfB, gtfC, and gtfD) and ftf, which encode glycosyltransferase (GTF) B, GTF C, and GTF D and fructosyltransferase, respectively. The genes involved in biofilm formation are smu630, relA, and comDE. The smu630 gene is important for biofilm formation. The relA and comDE genes contribute to quorum-sensing and biofilm formation. The genes involved in sugar uptake and metabolism are eno, ldh, and relA. The eno gene encodes bacterial enolase, which catalyzes the formation of phosphoenolpyruvate. The ldh gene encodes lactic acid dehydrogenase. The relA gene contributes to the regulation of the glucose phosphotransferase system. The genes related to acid tolerance are atpD, aguD, brpA, and relA. The atpD gene encodes F1F0-ATPase, a proton pump that discharges H⁺ from within the bacterium to the outside. The aguD gene encodes agmatine deiminase system and produces alkali to overcome acid stress. The genes involved in regulation are vicR, brpA, and relA.
Agmatine
;
Alkalies
;
Antigens, Surface
;
Bacteria
;
Bacterial Adhesion
;
Biofilms
;
Dental Caries
;
Glucose
;
Lactic Acid
;
Metabolism
;
Oxidoreductases
;
Phosphoenolpyruvate
;
Phosphopyruvate Hydratase
;
Proton Pumps
;
Streptococcus mutans
;
Streptococcus
;
Virulence
3.Interaction of Bombyx mori aminopeptidase N and cadherin-like protein with Bacillus thuringiensis Cry1Ac toxin.
Ping LIN ; Tingcai CHENG ; Tieshan FENG ; Jiao GONG ; Chun LIU ; Qingyou XIA
Chinese Journal of Biotechnology 2018;34(11):1809-1822
Bacillus thuringiensis (Bt) produces Cry toxins that are widely used as insecticides in agriculture and forestry. Receptors are important to elucidate the mode of interaction with Cry toxins and toxicity in lepidopteran insects. Here, we purified the Cry toxin from Bt and identified this toxin by flight mass spectrometry as Cry1Ac, and then recombinantly expressed aminopeptidase N (BmAPN6) and repeat domains of cadherin-like protein (CaLP) of B. mori. Using co-immunoprecipitation (co-IP), Far-Western blotting, and enzyme-linked immunosorbent assays (ELISAs), we identified the interaction between Cry1Ac and BmAPN6. Furthermore, analysis of the cytotoxic activity of Cry1Ac toxin in Sf9 cells showed that BmAPN6 directly interacted with Cry1Ac toxin to induce morphological aberrations and cell lysis. We also used co-IP, Far-Western blotting and ELISAs to analyze the interactions of Cry1Ac with three binding sites corresponding to cadherin repeat (CR) 7 CR11, and CR12 of CaLP. Notably, the three repeat domains were essential Cry1Ac binding components in CaLP. These results indicated that BmAPN6 and CaLP served as a functional receptor involved in Bt Cry1Ac toxin pathogenicity. These findings represent an important advancement in our understanding of the mechanisms of Cry1Ac toxicity and provide promising candidate targets for gene editing to enhance resistance to pathogens and increase the economic value of B. mori.
Animals
;
Bacillus thuringiensis
;
Bacterial Proteins
;
metabolism
;
Bombyx
;
enzymology
;
CD13 Antigens
;
metabolism
;
Cadherins
;
metabolism
;
Endotoxins
;
metabolism
;
Hemolysin Proteins
;
metabolism
;
Larva
4.Cloning expression and serological evaluation on Mycobacterium tuberculosis four new antigens.
Q LUO ; S J LI ; T Y XIAO ; M C LI ; H C LIU ; Y L LOU ; K L WAN
Chinese Journal of Epidemiology 2018;39(4):514-518
Objective: To evaluate the serological diagnostic value of Mycobacterium (M.) tuberculosis four new antigens Rv0432, Rv0674, Rv1566c and Rv1547. Methods:Rv0432, Rv0674, Rv1566c and Rv1547 were amplified from M. tuberculosis strain H37Rv genomic DNA by using PCR, among which Rv1547 was divided into two segments for amplification (Rv1547-1 and Rv1547-2). The segments were cloned into expression vector PET-32a while the recombinant proteins were purified by affinity chromatography. Serums were incubated with BL21 (DE3) proteins. Antibodies IgG against M. tuberculosis were tested with 151 serum samples (41 healthy people and 110 TB patients) by using ELISA. The diagnostic efficiency of antigens was analyzed by means of receiver operating characteristic curve. Difference of the objective proteins in TB patients and healthy controls was compared by t-test. Results: Recombinant antigens Rv0432, Rv0674, Rv1566c, Rv1547-1 and Rv1547-2 were successfully expressed and purified. Results from ELISA showed that the sensitivity, specificity, positive predictive value, negative predictive value, Youden index and area under the curve of Rv0432, Rv0674, Rv1566c, Rv1547-1 and Rv1547-2, as 43.64%-92.73%, 80.49%-92.68%, 0.92-0.94, 0.38-0.80, 0.363-0.732 and 0.649-0.915. All the objective proteins showed significantly higher antibody levels in TB patients, when compared to the healthy controls (P<0.000 1). Conclusion: The newly identified antigens Rv0432, Rv0674, Rv1566c, Rv1547-1 and Rv1547-2 all performed well when being used for TB serological diagnosis, thus were expected to be new candidate antigens used for TB diagnosis.
Antigens, Bacterial/genetics*
;
Cloning, Molecular
;
Enzyme-Linked Immunosorbent Assay
;
Humans
;
Immunoglobulin G
;
Mycobacterium tuberculosis/metabolism*
;
Polymerase Chain Reaction
;
ROC Curve
;
Recombinant Proteins
;
Sensitivity and Specificity
;
Serologic Tests/methods*
;
Tuberculosis/genetics*
5.Correlations between the CagA Antigen and Serum Levels of Anti-Helicobacter pylori IgG and IgA in Children.
Ji Hyun SEO ; Chun Woo LIM ; Ji Sook PARK ; Jung Sook YEOM ; Jae Young LIM ; Jin Su JUN ; Hyang Ok WOO ; Hee Shang YOUN ; Seung Chul BAIK ; Woo Kon LEE ; Myung Je CHO ; Kwang Ho RHEE
Journal of Korean Medical Science 2016;31(3):417-422
We tested correlations between anti-Helicobacter pylori IgG and IgA levels and the urease test, anti-CagA protein antibody, degree of gastritis, and age. In total, 509 children (0-15 years) were enrolled. Subjects were stratified as 0-4 years (n = 132), 5-9 years (n = 274), and 10-15 years (n = 103) and subjected to the urease test, histopathology, ELISA, and western blot using whole-cell lysates of H. pylori strain 51. The positivity rate in the urease test (P = 0.003), the degree of chronic gastritis (P = 0.021), and H. pylori infiltration (P < 0.001) increased with age. The median titer for anti-H. pylori IgG was 732.5 IU/mL at 0-4 years, 689.0 IU/mL at 5-9 years, and 966.0 IU/mL at 10-15 years (P < 0.001); the median titer for anti-H. pylori IgA was 61.0 IU/mL at 0-4 years, 63.5 IU/mL at 5-9 years, and 75.0 IU/mL at 10-15 years (P < 0.001). The CagA-positivity rate was 26.5% at 0-4 years, 36.5% at 5-9 years, and 46.6% at 10-15 years for IgG (P = 0.036), and 11.3% at 0-4 years, 18.6% at 5-9 years, and 23.3% at 10-15 years for IgA (P < 0.001). Anti-H. pylori IgG and IgA titers increased with the urease test grade, chronic gastritis degree, active gastritis, and H. pylori infiltration. Presence of CagA-positivity is well correlated with a high urease test grade and high anti-H. pylori IgG/IgA levels.
Adolescent
;
Antibodies, Bacterial/*blood
;
Antigens, Bacterial/*analysis/immunology
;
Bacterial Proteins/*analysis/immunology/metabolism
;
Blotting, Western
;
Child
;
Child, Preschool
;
Chronic Disease
;
Enzyme-Linked Immunosorbent Assay
;
Female
;
Gastritis/pathology
;
Helicobacter Infections/blood/microbiology/*pathology
;
Helicobacter pylori/isolation & purification/*metabolism
;
Humans
;
Immunoglobulin A/*blood
;
Immunoglobulin G/*blood
;
Infant
;
Infant, Newborn
;
Male
;
Severity of Illness Index
;
Urease/metabolism
6.Clinical Evaluation of Rapid Diagnostic Test Kit Using the Polysaccharide as a Genus-Specific Diagnostic Antigen for Leptospirosis in Korea, Bulgaria, and Argentina.
Jin Woo LEE ; Sungman PARK ; Seung Han KIM ; Iva CHRISTOVA ; Paulina JACOB ; Norma B VANASCO ; Yeon Mi KANG ; Ye Ju WOO ; Min Soo KIM ; Young Jin KIM ; Min Kee CHO ; Yoon Won KIM
Journal of Korean Medical Science 2016;31(2):183-189
Leptospirosis, a zoonotic disease that is caused by many serovars which are more than 200 in the world, is an emerging worldwide disease. Accurate and rapid diagnostic tests for leptospirosis are a critical step to diagnose the disease. There are some commercial kits available for diagnosis of leptospirosis, but the obscurity of a species- or genus-specific antigen of pathogenic Leptospira interrogans causes the reduced sensitivity and specificity. In this study, the polysaccharide derived from lipopolysaccharide (LPS) of nonpathogenic Leptospira biflexa serovar patoc was prepared, and the antigenicity was confirmed by immunoblot and enzyme linked immunosorbent assay (ELISA). The performance of the rapid diagnostic test (RDT) kit using the polysaccharide as a diagnostic antigen was evaluated in Korea, Bulgaria and Argentina. The sensitivity was 93.9%, 100%, and 81.0% and the specificity was 97.9%, 100%, and 95.4% in Korea (which is a rare region occurring with 2 serovars mostly), Bulgaria (epidemic region with 3 serovars chiefly) and Argentina (endemic region with 19 serovars mainly) respectively. These results indicate that this RDT is applicable for global diagnosis of leptospirosis. This rapid and effective diagnosis will be helpful for diagnosis and manage of leptospirosis to use and the polysaccharide of Leptospira may be called as genus specific antigen for diagnosis.
Antigens, Bacterial/*immunology
;
Argentina
;
Bulgaria
;
Enzyme-Linked Immunosorbent Assay
;
Female
;
Humans
;
Leptospira/isolation & purification/metabolism
;
Leptospira interrogans/isolation & purification/metabolism
;
Leptospirosis/*diagnosis/microbiology
;
Male
;
Polysaccharides/*immunology
;
Reagent Kits, Diagnostic/*standards
;
Republic of Korea
;
Sensitivity and Specificity
7.Clinical Evaluation of Rapid Diagnostic Test Kit Using the Polysaccharide as a Genus-Specific Diagnostic Antigen for Leptospirosis in Korea, Bulgaria, and Argentina.
Jin Woo LEE ; Sungman PARK ; Seung Han KIM ; Iva CHRISTOVA ; Paulina JACOB ; Norma B VANASCO ; Yeon Mi KANG ; Ye Ju WOO ; Min Soo KIM ; Young Jin KIM ; Min Kee CHO ; Yoon Won KIM
Journal of Korean Medical Science 2016;31(2):183-189
Leptospirosis, a zoonotic disease that is caused by many serovars which are more than 200 in the world, is an emerging worldwide disease. Accurate and rapid diagnostic tests for leptospirosis are a critical step to diagnose the disease. There are some commercial kits available for diagnosis of leptospirosis, but the obscurity of a species- or genus-specific antigen of pathogenic Leptospira interrogans causes the reduced sensitivity and specificity. In this study, the polysaccharide derived from lipopolysaccharide (LPS) of nonpathogenic Leptospira biflexa serovar patoc was prepared, and the antigenicity was confirmed by immunoblot and enzyme linked immunosorbent assay (ELISA). The performance of the rapid diagnostic test (RDT) kit using the polysaccharide as a diagnostic antigen was evaluated in Korea, Bulgaria and Argentina. The sensitivity was 93.9%, 100%, and 81.0% and the specificity was 97.9%, 100%, and 95.4% in Korea (which is a rare region occurring with 2 serovars mostly), Bulgaria (epidemic region with 3 serovars chiefly) and Argentina (endemic region with 19 serovars mainly) respectively. These results indicate that this RDT is applicable for global diagnosis of leptospirosis. This rapid and effective diagnosis will be helpful for diagnosis and manage of leptospirosis to use and the polysaccharide of Leptospira may be called as genus specific antigen for diagnosis.
Antigens, Bacterial/*immunology
;
Argentina
;
Bulgaria
;
Enzyme-Linked Immunosorbent Assay
;
Female
;
Humans
;
Leptospira/isolation & purification/metabolism
;
Leptospira interrogans/isolation & purification/metabolism
;
Leptospirosis/*diagnosis/microbiology
;
Male
;
Polysaccharides/*immunology
;
Reagent Kits, Diagnostic/*standards
;
Republic of Korea
;
Sensitivity and Specificity
8.Opacity proteins of neisseria gonorrhoeae in lipooligosaccharide mutants lost ability to interact with neutrophil-restricted CEACAM3 (CD66d).
Song ZHANG ; Ya-Ting TU ; Hua-Hua CAI ; Hong-Hui DING ; Qiao LI ; Ying-Xia HE ; Xin-Xin LIU ; Xin WANG ; Feng HU ; Tie CHEN ; Hong-Xiang CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):344-349
Lipooligosacharide (LOS) of Neisseria gonorrhoeae (gonococci, GC) is involved in the interaction of GC with host cells. Deletion of the alpha-oligosaccharide (alpha-OS) moiety of LOS (lgtF mutant) significantly impairs invasion of GC into epithelial cell lines. GC opacity (Opa) proteins, such as OpaI, mediate phagocytosis and stimulate chemiluminescence responses in neutrophils in part through interaction with members of the carcinoembryonic antigen (CEA) family, which includes CEACAM3 (CD66d), a human neutrophil specific receptor for phagocytosis of bacteria. In the present work, we examined the effects of OpaI-expressing lgtF mutant on phagocytosis by HeLa-CEACAM3 cells and chemiluminescence responses in neutrophils. The results showed that lgtF mutant even expressing OpaI completely lost the ability to promote either phagocytosis mediated by CEACAM3 interaction in HeLa cells or chemiluminescence responses in neutrophils. These data indicated that Opa proteins in the lgtF mutant, which might result from the conformational change, cannot be functional.
Antigens, Bacterial
;
chemistry
;
genetics
;
immunology
;
metabolism
;
Carbohydrate Sequence
;
Carcinoembryonic Antigen
;
genetics
;
immunology
;
Gene Expression Regulation
;
HeLa Cells
;
Host-Pathogen Interactions
;
Humans
;
Lipopolysaccharides
;
chemistry
;
immunology
;
Luminescent Measurements
;
Mutation
;
Neisseria gonorrhoeae
;
genetics
;
metabolism
;
pathogenicity
;
Neutrophils
;
immunology
;
microbiology
;
Phagocytosis
9.Identification of Outer Membrane Vesicles Derived from Orientia tsutsugamushi.
Sun Myoung LEE ; Hea Yoon KWON ; Jae Hyong IM ; Ji Hyeon BAEK ; Jae Seung KANG ; Jin Soo LEE
Journal of Korean Medical Science 2015;30(7):866-870
Orientia tsutsugamushi, a causative pathogen of Scrub typhus, is a gram-negative intracellular bacterium. Outer membrane vesicles (OMVs) are produced from the membrane of bacteria and play many roles related to the survival of the pathogen. However, there have been no reports confirming whether O. tsutsugamushi indeed produce OMVs. O. tsutsugamushi boryong was cultured in ECV-304 cells for the purification of OMVs. Western blot analysis and immunoenrichment using anti-O. tsutsugamushi monoclonal antibody and electron microscopy were employed for identification and characterization of OMVs. We confirm the presence of OMVs derived from O. tsutsugamushi, and also found that those OMVs contain a major surface antigen of 56-kDa protein and variant immunogenic antigens.
Antibodies, Monoclonal/*immunology
;
Antigens, Bacterial/*immunology
;
Antigens, Surface/*immunology
;
Cell Line
;
Cell Membrane/immunology
;
Humans
;
Microscopy, Electron
;
Orientia tsutsugamushi/*immunology/metabolism
;
Scrub Typhus/diagnosis/microbiology
;
Secretory Vesicles/*immunology
10.Evaluation of adjuvant effects of fucoidan for improving vaccine efficacy.
Journal of Veterinary Science 2015;16(2):145-150
Fucoidan is a sulfated polysaccharide derived from brown seaweed, including Fucus vesiculosus. This compound is known to have immunostimulatory effects on various types of immune cells including macrophages and dendritic cells. A recent study described the application of fucoidan as a vaccine adjuvant. Vaccination is regarded as the most efficient prophylactic method for preventing harmful or epidemic diseases. To increase vaccine efficacy, effective adjuvants are needed. In the present study, we determined whether fucoidan can function as an adjuvant using vaccine antigens. Flow cytometric analysis revealed that fucoidan increases the expression of the activation markers major histocompatibility complex class II, cluster of differentiation (CD)25, and CD69 in spleen cells. In combination with Bordetella bronchiseptica antigen, fucoidan increased the viability and tumor necrosis factor-alpha production of spleen cells. Furthermore, fucoidan increased the in vivo production of antigen-specific antibodies in mice inoculated with Mycoplasma hyopneumoniae antigen. Overall, this study has provided valuable information about the use of fucoidan as a vaccine adjuvant.
Adjuvants, Immunologic/pharmacology
;
Animals
;
Antigens, Bacterial/*immunology
;
Bacterial Vaccines/administration & dosage/*immunology
;
Biomarkers/metabolism
;
Bordetella bronchiseptica/*immunology
;
Cells, Cultured
;
Cytokines/*metabolism
;
Female
;
Flow Cytometry
;
Fucus/*chemistry
;
Gene Expression Regulation/drug effects
;
Mice
;
Mice, Inbred BALB C
;
Mycoplasma hyopneumoniae/*immunology
;
Polysaccharides/*pharmacology
;
Spleen/metabolism

Result Analysis
Print
Save
E-mail