1.Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis
Jun Ho AHN ; Sung Hee HWANG ; Hyun Soo CHO ; Michael LEE
Biomolecules & Therapeutics 2019;27(3):302-310
Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and
Antigen Presentation
;
Biological Processes
;
Cell Adhesion
;
Cell Line
;
Cell Movement
;
Classification
;
Collagen
;
Drug Resistance
;
Extracellular Matrix
;
Gene Expression
;
Gene Ontology
;
Melanoma
;
Osteoblasts
;
Proto-Oncogene Proteins c-akt
2.Two Distinct Subsets Are Identified from the Peritoneal Myeloid Mononuclear Cells Expressing both CD11c and CD115
Moah SOHN ; Hye Young NA ; Seul Hye RYU ; Wanho CHOI ; Hyunju IN ; Hyun Soo SHIN ; Ji Soo PARK ; Dahee SHIM ; Sung Jae SHIN ; Chae Gyu PARK
Immune Network 2019;19(3):e15-
To this date, the criteria to distinguish peritoneal macrophages and dendritic cells (DCs) are not clear. Here we delineate the subsets of myeloid mononuclear cells in the mouse peritoneal cavity. Considering phenotypical, functional, and ontogenic features, peritoneal myeloid mononuclear cells are divided into 5 subsets: large peritoneal macrophages (LPMs), small peritoneal macrophages (SPMs), DCs, and 2 MHCII⁺CD11c⁺CD115⁺ subpopulations (i.e., MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ and MHCII⁺CD11c⁺CD115⁺CD14⁺CD206⁺). Among them, 2 subsets of competent Ag presenting cells are demonstrated with distinct functional characteristics, one being DCs and the other being MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells. DCs are able to promote fully activated T cells and superior in expanding cytokine producing inflammatory T cells, whereas MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells generate partially activated T cells and possess a greater ability to induce Treg under TGF-β and retinoic acid conditions. While the development of DCs and MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells are responsive to the treatment of FLT3 ligand and GM-CSF, the number of LPMs, SPMs, and MHCII⁺CD11c⁺CD115⁺CD14⁺CD206⁺ cells are only influenced by the injection of GM-CSF. In addition, the analysis of gene expression profiles among MHCII⁺ peritoneal myeloid mononuclear cells reveals that MHCII⁺CD11c⁺CD115⁺CD14⁺CD206⁺ cells share high similarity with SPMs, whereas MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells are related to peritoneal DC2s. Collectively, our study identifies 2 distinct subpopulations of MHCII⁺CD11c⁺CD115⁺ cells, 1) MHCII⁺CD11c⁺CD115⁺CD14⁻CD206⁻ cells closely related to peritoneal DC2s and 2) MHCII⁺CD11c⁺CD115⁺CD14⁺CD206⁺ cells to SPMs.
Animals
;
Antigen Presentation
;
Dendritic Cells
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
Macrophages
;
Macrophages, Peritoneal
;
Mice
;
Peritoneal Cavity
;
T-Lymphocytes
;
Transcriptome
;
Tretinoin
3.Expression of Immunoproteasome Subunit LMP7 in Breast Cancer and Its Association with Immune-Related Markers.
Miseon LEE ; In Hye SONG ; Sun Hee HEO ; Young Ae KIM ; In Ah PARK ; Won Seon BANG ; Hye Seon PARK ; Gyungyub GONG ; Hee Jin LEE
Cancer Research and Treatment 2019;51(1):80-89
PURPOSE: In the presence of interferon, proteasome subunits are replaced by their inducible counterparts to form an immunoproteasome (IP) plays a key role in generation of antigenic peptides presented by MHC class I molecules, leading to elicitation of a T cell‒mediated immune response. Although the roles of IP in other cancers, and inflammatory diseases have been extensively studied, its significance in breast cancer is unclear. MATERIALS AND METHODS: We investigated the expression of LMP7, an IP subunit, and its relationship with immune system components in two breast cancer cohorts. RESULTS: In 668 consecutive breast cancer cohort, 40% of tumors showed high level of LMP7 expression, and tumors with high expression of LMP7 had more tumor-infiltrating lymphocytes (TILs) in each subtype of breast cancer. In another cohort of 681 triple-negative breast cancer patients cohort, the expression of LMP7 in tumor cells was significantly correlated with the amount of TILs and the expression of interferon-associated molecules (MxA [p < 0.001] and PKR [p < 0.001]), endoplasmic reticulum stress-associated molecules (PERK [p=0.012], p-eIF2a [p=0.001], and XBP1 [p < 0.001]), and damage-associated molecular patterns (HMGN1 [p < 0.001] and HMGB1 [p < 0.001]). Patients with higher LMP7 expression had better disease-free survival outcomes than those with no or low expression in the positive lymph node metastasis group (p=0.041). CONCLUSION: Close association between the TIL levels and LMP7 expression in breast cancer indicates that better antigen presentation through greater LMP7 expression might be associated with more TILs.
Antigen Presentation
;
Breast Neoplasms*
;
Breast*
;
Cohort Studies
;
Disease-Free Survival
;
Endoplasmic Reticulum
;
HLA Antigens
;
HMGB1 Protein
;
Humans
;
Immune System
;
Interferons
;
Lymph Nodes
;
Lymphocytes, Tumor-Infiltrating
;
Neoplasm Metastasis
;
Peptides
;
Proteasome Endopeptidase Complex
;
Triple Negative Breast Neoplasms
4.Association Analysis of Proteasome Subunits and Transporter Associated with Antigen Processing on Chinese Patients with Parkinson's Disease.
Ming-Shu MO ; Wei HUANG ; Cong-Cong SUN ; Li-Min ZHANG ; Luan CEN ; You-Sheng XIAO ; Guo-Fei LI ; Xin-Ling YANG ; Shao-Gang QU ; Ping-Yi XU ;
Chinese Medical Journal 2016;129(9):1053-1058
BACKGROUNDProteasome subunits (PSMB) and transporter associated with antigen processing (TAP) loci are located in the human leukocyte antigen (HLA) Class II region play important roles in immune response and protein degradation in neurodegenerative diseases. This study aimed to explore the association between single nucleotide polymorphisms (SNPs) of PSMB and TAP and Parkinson's disease (PD).
METHODSA case-control study was conducted by genotyping SNPs in PSMB8, PSMB9, TAP1, and TAP2 genes in the Chinese population. Subjects included 542 sporadic patients with PD and 674 healthy controls. Nine identified SNPs in PSMB8, PSMB9, TAP1, and TAP2 were genotyped through SNaPshot testing.
RESULTSThe stratified analysis of rs17587 was specially performed on gender. Data revealed that female patients carry a higher frequency of rs17587-G/G versus (A/A + G/A) compared with controls. But there was no significant difference with respect to the genotypic frequencies of the SNPs in PSMB8, TAP1, and TAP2 loci in PD patients.
CONCLUSIONChinese females carrying the rs17587-G/G genotype in PSMB9 may increase a higher risk for PD, but no linkage was found between other SNPs in HLA Class II region and PD.
ATP-Binding Cassette Sub-Family B Member 2 ; genetics ; ATP-Binding Cassette, Sub-Family B, Member 3 ; genetics ; Adult ; Aged ; Antigen Presentation ; Case-Control Studies ; Cysteine Endopeptidases ; genetics ; Female ; Humans ; Male ; Middle Aged ; Parkinson Disease ; genetics ; immunology ; Polymorphism, Single Nucleotide ; Proteasome Endopeptidase Complex ; genetics
5.Pathogenic Role of Autophagy in Rheumatic Diseases.
Journal of Rheumatic Diseases 2016;23(4):202-211
Autophagy is a principle catabolic process mediated by lysosomes in eukaryotic cells. This is an intracellular homeostatic mechanism crucial for degradation in acidic lysosomal compartments of waste components from the cytoplasm. Autophagy research was initially focused on its degradation mechanism, but focus is now shifting to its effects on immunity. It contributes to detection and removal of pathogens as well as regulation of inflammasomes and neutrophil extracellular traps. Moreover, it is pivotal in antigen presentation and immune cell maturation, survival and homeostasis. The importance of autophagic pathways in normal and dysregulated immunity has become increasingly recognized in the past several years. Dysregulation of the autophagic pathway is implicated in the pathogenesis of several rheumatic diseases. In this review, we summarize the immunological function of autophagy in innate and adaptive immunity, and the functions of autophagy in the pathogenesis of rheumatic diseases.
Adaptive Immunity
;
Antigen Presentation
;
Arthritis, Rheumatoid
;
Autophagy*
;
Cytoplasm
;
Eukaryotic Cells
;
Extracellular Traps
;
Homeostasis
;
Inflammasomes
;
Lupus Erythematosus, Systemic
;
Lysosomes
;
Rheumatic Diseases*
6.Use of Cell-Penetrating Peptides in Dendritic Cell-Based Vaccination.
Sangho LIM ; Ja Hyun KOO ; Je Min CHOI
Immune Network 2016;16(1):33-43
Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4+ and CD8+ T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.
Amino Acids
;
Antigen Presentation
;
Cell-Penetrating Peptides*
;
Dendritic Cells
;
DNA
;
Immune System Diseases
;
Immunotherapy
;
Peptides
;
RNA
;
Vaccination*
;
Vaccines
7.Vanilloid Receptor 1 Agonists, Capsaicin and Resiniferatoxin, Enhance MHC Class I-restricted Viral Antigen Presentation in Virus-infected Dendritic Cells.
Young Hee LEE ; Sun A IM ; Ji Wan KIM ; Chong Kil LEE
Immune Network 2016;16(4):233-241
DCs, like the sensory neurons, express vanilloid receptor 1 (VR1). Here we demonstrate that the VR1 agonists, capsaicin (CP) and resiniferatoxin (RTX), enhance antiviral CTL responses by increasing MHC class I-restricted viral antigen presentation in dendritic cells (DCs). Bone marrow-derived DCs (BM-DCs) were infected with a recombinant vaccinia virus (VV) expressing OVA (VV-OVA), and then treated with CP or RTX. Both CP and RTX increased MHC class I-restricted presentation of virus-encoded endogenous OVA in BM-DCs. Oral administration of CP or RTX significantly increased MHC class I-restricted OVA presentation by splenic and lymph node DCs in VV-OVA-infected mice, as assessed by directly measuring OVA peptide SIINFEKL-Kb complexes on the cell surface and by performing functional assays using OVA-specific CD8 T cells. Accordingly, oral administration of CP or RTX elicited potent OVA-specific CTL activity in VV-OVA-infected mice. The results from this study demonstrate that VR1 agonists enhance anti-viral CTL responses, as well as a neuro-immune connection in anti-viral immune responses.
Administration, Oral
;
Animals
;
Antigen Presentation*
;
Capsaicin*
;
Dendritic Cells*
;
Lymph Nodes
;
Mice
;
Ovum
;
Sensory Receptor Cells
;
T-Lymphocytes
;
Vaccinia virus
8.Subdominant H60 antigen-specific CD8 T-cell response precedes dominant H4 antigen-specific response during the initial phase of allogenic skin graft rejection.
Kang Il YOO ; Ji Yeong JEON ; Su Jeong RYU ; Giri NAM ; Hyewon YOUN ; Eun Young CHOI
Experimental & Molecular Medicine 2015;47(2):e140-
In allogeneic transplantation, including the B6 anti-BALB.B settings, H60 and H4 are two representative dominant minor histocompatibility antigens that induce strong CD8 T-cell responses. With different distribution patterns, H60 expression is restricted to hematopoietic cells, whereas H4 is ubiquitously expressed. H60-specific CD8 T-cell response has been known to be dominant in most cases of B6 anti-BALB.B allo-responses, except in the case of skin transplantation. To understand the mechanism underlying the subdominance of H60 during allogeneic skin transplantation, we investigated the dynamics of the H60-specific CD8 T cells in B6 mice transplanted with allogeneic BALB.B tail skin. Unexpectedly, longitudinal bioluminescence imaging and flow cytometric analyses revealed that H60-specific CD8 T cells were not always subdominant to H4-specific cells but instead showed a brief dominance before the H4 response became predominant. H60-specific CD8 T cells could expand in the draining lymph node and migrate to the BALB.B allografts, indicating their active participation in the anti-BALB.B allo-response. Enhancing the frequencies of H60-reactive CD8 T cells prior to skin transplantation reversed the immune hierarchy between H60 and H4. Additionally, H60 became predominant when antigen presentation was limited to the direct pathway. However, when antigen presentation was restricted to the indirect pathway, the expansion of H60-specific CD8 T cells was limited, whereas H4-specific CD8 T cells expanded significantly, suggesting that the temporary immunodominance and eventual subdominance of H60 could be due to their reliance on the direct antigen presentation pathway. These results enhance our understanding of the immunodominance phenomenon following allogeneic tissue transplantation.
Animals
;
Antigen Presentation
;
Antigen-Presenting Cells/immunology/metabolism
;
CD8-Positive T-Lymphocytes/*immunology
;
Epitopes, T-Lymphocyte/*immunology
;
Female
;
Graft Rejection/*immunology
;
Interferon-gamma
;
Lymphocyte Activation/immunology
;
Lymphocyte Count
;
Mice
;
Minor Histocompatibility Antigens/*immunology/metabolism
;
*Skin Transplantation
;
Transplantation, Homologous
9.Analysis of porcine macrophage immune response to antigenic molecules and short chain fatty acids.
Na Eun HAN ; Eun Joo LEE ; Kwan Sik PARK ; In Sook JEON ; Hak Kyo LEE ; Ki Duk SONG ; Joong Kook CHOI
Journal of Biomedical Research 2015;16(2):47-52
Macrophages play an important role in both the innate and adaptive immune responses. These include phagocytosis, killing of microorganisms, antigen presentation, and induction of immune cytokines and antimicrobial genes. Macrophage activity is reported to be controlled by diverse exogenous antigenic or endogenous metabolic molecules, and the underlying mechanisms are well documented in human and mouse macrophage cells. Bacterial lipopolysaccharide (LPS) is known to be one of the most potent stimuli activating macrophages through the toll like receptor 4 (TLR4) signaling pathway. There are other antigenic molecules, such as muramyl dipeptide (MDP) and outer membrane protein A (OmpA), that are also known to activate immune cells. On the other hand, short chain fatty acids (SCFAs) such as acetate and butyrate are produced by gut microbiota and control host energy metabolism and signal transduction through GPR receptors. However, there are few studies demonstrating the effects of these molecules in macrophages from domestic animals, including domestic pigs. In this study, we attempted to characterize gene expression regulation in porcine macrophages (PoM2, Pig Monocytes clone 2) following treatment with LPS, MDP, OmpA, and two short chain fatty acids using porcine genome microarray and RT-PCR techniques. A number of novel porcine genes, including anti-microbial peptides and others, appeared to be regulated at the transcriptional level. Our study reports novel biomarkers such as SLC37A2, TMEN184C, and LEAP2 that are involved in the porcine immune response to bacterial antigen LPS and two short chain fatty acids.
Acetylmuramyl-Alanyl-Isoglutamine
;
Animals
;
Animals, Domestic
;
Antigen Presentation
;
Biomarkers
;
Butyrates
;
Clone Cells
;
Cytokines
;
Energy Metabolism
;
Fatty Acids*
;
Gene Expression Regulation
;
Genome
;
Hand
;
Homicide
;
Humans
;
Macrophages*
;
Membrane Proteins
;
Mice
;
Microbiota
;
Monocytes
;
Oligonucleotide Array Sequence Analysis
;
Peptides
;
Phagocytosis
;
Signal Transduction
;
Sus scrofa
;
Toll-Like Receptor 4
10.Improvement of DNA vaccination by adjuvants and sophisticated delivery devices: vaccine-platforms for the battle against infectious diseases.
Thomas GRUNWALD ; Sebastian ULBERT
Clinical and Experimental Vaccine Research 2015;4(1):1-10
Advantages of DNA vaccination against infectious diseases over more classical immunization methods include the possibilities for rapid manufacture, fast adaptation to newly emerging pathogens and high stability at ambient temperatures. In addition, upon DNA immunization the antigen is produced by the cells of the vaccinated individual, which leads to activation of both cellular and humoral immune responses due to antigen presentation via MHC I and MHC II molecules. However, so far DNA vaccines have shown most efficient immunogenicity mainly in small rodent models, whereas in larger animals including humans there is still the need to improve effectiveness. This is mostly due to inefficient delivery of the DNA plasmid into cells and nuclei. Here, we discuss technologies used to overcome this problem, including physical means such as in vivo electroporation and co-administration of adjuvants. Several of these methods have already entered clinical testing in humans.
Adjuvants, Immunologic
;
Animals
;
Antigen Presentation
;
Communicable Diseases*
;
DNA*
;
Electroporation
;
Gene Transfer Techniques
;
Humans
;
Immunity, Humoral
;
Immunization
;
Plasmids
;
Rodentia
;
Vaccination*
;
Vaccines, DNA

Result Analysis
Print
Save
E-mail