1.BGB-A445, a novel non-ligand-blocking agonistic anti-OX40 antibody, exhibits superior immune activation and antitumor effects in preclinical models.
Beibei JIANG ; Tong ZHANG ; Minjuan DENG ; Wei JIN ; Yuan HONG ; Xiaotong CHEN ; Xin CHEN ; Jing WANG ; Hongjia HOU ; Yajuan GAO ; Wenfeng GONG ; Xing WANG ; Haiying LI ; Xiaosui ZHOU ; Yingcai FENG ; Bo ZHANG ; Bin JIANG ; Xueping LU ; Lijie ZHANG ; Yang LI ; Weiwei SONG ; Hanzi SUN ; Zuobai WANG ; Xiaomin SONG ; Zhirong SHEN ; Xuesong LIU ; Kang LI ; Lai WANG ; Ye LIU
Frontiers of Medicine 2023;17(6):1170-1185
OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.
Mice
;
Animals
;
Receptors, Tumor Necrosis Factor/physiology*
;
Receptors, OX40
;
Membrane Glycoproteins
;
Ligands
;
Antibodies, Monoclonal/pharmacology*
;
Antineoplastic Agents/pharmacology*
4.Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection.
Rongjuan PEI ; Jianqi FENG ; Yecheng ZHANG ; Hao SUN ; Lian LI ; Xuejie YANG ; Jiangping HE ; Shuqi XIAO ; Jin XIONG ; Ying LIN ; Kun WEN ; Hongwei ZHOU ; Jiekai CHEN ; Zhili RONG ; Xinwen CHEN
Protein & Cell 2021;12(9):717-733
The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.
Adenosine Monophosphate/therapeutic use*
;
Alanine/therapeutic use*
;
Alveolar Epithelial Cells/virology*
;
Antibodies, Neutralizing/therapeutic use*
;
COVID-19/virology*
;
Down-Regulation
;
Drug Discovery
;
Human Embryonic Stem Cells/metabolism*
;
Humans
;
Immunity
;
Lipid Metabolism
;
Lung/virology*
;
RNA, Viral/metabolism*
;
SARS-CoV-2/physiology*
;
Virus Replication/drug effects*
5.Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection.
Yun TAN ; Feng LIU ; Xiaoguang XU ; Yun LING ; Weijin HUANG ; Zhaoqin ZHU ; Mingquan GUO ; Yixiao LIN ; Ziyu FU ; Dongguo LIANG ; Tengfei ZHANG ; Jian FAN ; Miao XU ; Hongzhou LU ; Saijuan CHEN
Frontiers of Medicine 2020;14(6):746-751
The ongoing pandemic of Coronavirus disease 19 (COVID-19) is caused by a newly discovered β Coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). How long the adaptive immunity triggered by SARS-CoV-2 can last is of critical clinical relevance in assessing the probability of second infection and efficacy of vaccination. Here we examined, using ELISA, the IgG antibodies in serum specimens collected from 17 COVID-19 patients at 6-7 months after diagnosis and the results were compared to those from cases investigated 2 weeks to 2 months post-infection. All samples were positive for IgGs against the S- and N-proteins of SARS-CoV-2. Notably, 14 samples available at 6-7 months post-infection all showed significant neutralizing activities in a pseudovirus assay, with no difference in blocking the cell-entry of the 614D and 614G variants of SARS-CoV-2. Furthermore, in 10 blood samples from cases at 6-7 months post-infection used for memory T-cell tests, we found that interferon γ-producing CD4
Adaptive Immunity/physiology*
;
Adult
;
Aged
;
Antibodies, Neutralizing/blood*
;
COVID-19/immunology*
;
Cohort Studies
;
Female
;
Humans
;
Immunoglobulin G/blood*
;
Male
;
Middle Aged
;
SARS-CoV-2/immunology*
;
T-Lymphocytes/physiology*
;
Time Factors
;
Viral Proteins/immunology*
6.Cross-reaction of Sera from COVID-19 Patients with SARS-CoV Assays.
Wei Yee WAN ; Siew Hoon LIM ; Eng Hong SENG
Annals of the Academy of Medicine, Singapore 2020;49(7):523-526
Antibodies, Viral
;
physiology
;
Betacoronavirus
;
physiology
;
Clinical Laboratory Techniques
;
Coronavirus Infections
;
diagnosis
;
Cross Reactions
;
physiology
;
Enzyme-Linked Immunosorbent Assay
;
Fluorescent Antibody Technique, Indirect
;
Humans
;
Pandemics
;
Pneumonia, Viral
;
diagnosis
;
SARS Virus
;
physiology
7.Presence of serum antinuclear antibodies correlating unfavorable overall survival in patients with chronic lymphocytic leukemia.
Qian SUN ; Li WANG ; Hua-Yuan ZHU ; Yi MIAO ; Wei WU ; Jin-Hua LIANG ; Lei CAO ; Yi XIA ; Jia-Zhu WU ; Yan WANG ; Rong WANG ; Lei FAN ; Wei XU ; Jian-Yong LI
Chinese Medical Journal 2019;132(5):525-533
BACKGROUND:
Serum antinuclear antibodies (ANAs) are positive in some patients with chronic lymphocytic leukemia (CLL), but the prognostic value of ANAs remains unknown. The aim of this study was to evaluate the role of ANAs as a prognostic factor in CLL.
METHODS:
This study retrospectively analyzed clinical data from 216 newly diagnosed CLL subjects with ANAs test from 2007 to 2017. Multivariate Cox regression analyses were used to screen the independent prognostic factors related to time to first treatment (TTFT), progression free survival (PFS) and overall survival (OS). Receiver operator characteristic curves and area under the curve (AUC) were utilized to assess the predictive accuracy of ANAs together with other independent factors for OS.
RESULTS:
The incidence of ANAs abnormality at diagnosis was 13.9%. ANAs positivity and TP53 disruption were independent prognostic indicators for OS. The AUC of positive ANAs together with TP53 disruption was 0.766 (95% confidence interval [CI]: 0.697-0.826), which was significantly larger than that of either TP53 disruption (AUC: 0.706, 95% CI: 0.634-0.772, P = 0.034) or positive ANAs (AUC: 0.595, 95% CI: 0.520-0.668, P < 0.001) in OS prediction. Besides, serum positive ANAs as one additional parameter to CLL-international prognostic index (IPI) obtained superior AUCs in predicting CLL OS than CLL-IPI alone.
CONCLUSION
This study identified ANAs as an independent prognostic factor for CLL, and further investigations are needed to validate this finding.
ADP-ribosyl Cyclase 1
;
blood
;
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Antibodies, Antinuclear
;
blood
;
Autoimmunity
;
physiology
;
Female
;
Humans
;
Kaplan-Meier Estimate
;
Leukemia, Lymphocytic, Chronic, B-Cell
;
blood
;
mortality
;
Male
;
Middle Aged
;
Multivariate Analysis
;
Mutation
;
genetics
;
Proportional Hazards Models
;
Retrospective Studies
;
Survival Analysis
;
Tumor Suppressor Protein p53
;
blood
;
Young Adult
;
ZAP-70 Protein-Tyrosine Kinase
;
blood
8.Laboratory Testing in Thyroid Conditions - Pitfalls and Clinical Utility.
Annals of Laboratory Medicine 2019;39(1):3-14
Thyroid disorders are common, affecting more than 10% of people in the US, and laboratory tests are integral in the management of these conditions. The repertoire of thyroid tests includes blood tests for thyroid-stimulating hormone (TSH), free thyroxine, free triiodothyronine, thyroglobulin (Tg), thyroglobulin antibodies (Tg-Ab), thyroid peroxidase antibodies (TPO-Ab), TSH receptor antibodies (TRAb), and calcitonin. TSH and free thyroid hormone tests are frequently used to assess the functional status of the thyroid. TPO-Ab and TRAb tests are used to diagnose Hashimoto's thyroiditis and Graves' disease, respectively. Tg and calcitonin are important tumor markers used in the management of differentiated thyroid carcinoma and medullary thyroid carcinoma (MTC), respectively. Procalcitonin may replace calcitonin as a biomarker for MTC. Apart from understanding normal thyroid physiology, it is important to be familiar with the possible pitfalls and caveats in the use of these tests so that they can be interpreted properly and accurately. When results are discordant, clinicians and laboratorians should be mindful of possible assay interferences and/or the effects of concurrent medications. In addition, thyroid function may appear abnormal in the absence of actual thyroid dysfunction during pregnancy and in critical illness. Hence, it is important to consider the clinical context when interpreting results. This review aims to describe the above-mentioned blood tests used in the diagnosis and management of thyroid disorders, as well as the pitfalls in their interpretation. With due knowledge and care, clinicians and laboratorians will be able to fully appreciate the clinical utility of these important laboratory tests.
Antibodies
;
Biomarkers, Tumor
;
Calcitonin
;
Critical Illness
;
Diagnosis
;
Graves Disease
;
Hematologic Tests
;
Iodide Peroxidase
;
Physiology
;
Pregnancy
;
Receptors, Thyrotropin
;
Thyroglobulin
;
Thyroid Function Tests
;
Thyroid Gland*
;
Thyroid Neoplasms
;
Thyroiditis
;
Thyrotropin
;
Thyroxine
;
Triiodothyronine
9.Differential Inhibition of Nav1.7 and Neuropathic Pain by Hybridoma-Produced and Recombinant Monoclonal Antibodies that Target Nav1.7 : Differential activities of Nav1.7-targeting monoclonal antibodies.
Sangsu BANG ; Jiho YOO ; Xingrui GONG ; Di LIU ; Qingjian HAN ; Xin LUO ; Wonseok CHANG ; Gang CHEN ; Sang-Taek IM ; Yong Ho KIM ; Judith A STRONG ; Ma-Zhong ZHANG ; Jun-Ming ZHANG ; Seok-Yong LEE ; Ru-Rong JI
Neuroscience Bulletin 2018;34(1):22-41
The voltage-gated Na channel subtype Nav1.7 is important for pain and itch in rodents and humans. We previously showed that a Nav1.7-targeting monoclonal antibody (SVmab) reduces Na currents and pain and itch responses in mice. Here, we investigated whether recombinant SVmab (rSVmab) binds to and blocks Nav1.7 similar to SVmab. ELISA tests revealed that SVmab was capable of binding to Nav1.7-expressing HEK293 cells, mouse DRG neurons, human nerve tissue, and the voltage-sensor domain II of Nav1.7. In contrast, rSVmab showed no or weak binding to Nav1.7 in these tests. Patch-clamp recordings showed that SVmab, but not rSVmab, markedly inhibited Na currents in Nav1.7-expressing HEK293 cells. Notably, electrical field stimulation increased the blocking activity of SVmab and rSVmab in Nav1.7-expressing HEK293 cells. SVmab was more effective than rSVmab in inhibiting paclitaxel-induced mechanical allodynia. SVmab also bound to human DRG neurons and inhibited their Na currents. Finally, potential reasons for the differential efficacy of SVmab and rSVmab and future directions are discussed.
Animals
;
Antibodies, Monoclonal
;
therapeutic use
;
Biotin
;
metabolism
;
Cells, Cultured
;
Disease Models, Animal
;
Female
;
Ganglia, Spinal
;
cytology
;
HEK293 Cells
;
Humans
;
Hybridomas
;
chemistry
;
Hyperalgesia
;
drug therapy
;
Male
;
Mice
;
Mice, Inbred C57BL
;
NAV1.5 Voltage-Gated Sodium Channel
;
metabolism
;
NAV1.7 Voltage-Gated Sodium Channel
;
chemistry
;
immunology
;
metabolism
;
Neuralgia
;
drug therapy
;
metabolism
;
Protein Binding
;
drug effects
;
Recombinant Proteins
;
biosynthesis
;
therapeutic use
;
Sensory Receptor Cells
;
drug effects
;
physiology
10.Involvement of NF-κB and the CX3CR1 Signaling Network in Mechanical Allodynia Induced by Tetanic Sciatic Stimulation.
Zhe-Chen WANG ; Li-Hong LI ; Chao BIAN ; Liu YANG ; Ning LV ; Yu-Qiu ZHANG
Neuroscience Bulletin 2018;34(1):64-73
Tetanic stimulation of the sciatic nerve (TSS) triggers long-term potentiation in the dorsal horn of the spinal cord and long-lasting pain hypersensitivity. CX3CL1-CX3CR1 signaling is an important pathway in neuronal-microglial activation. Nuclear factor κB (NF-κB) is a key signal transduction molecule that regulates neuroinflammation and neuropathic pain. Here, we set out to determine whether and how NF-κB and CX3CR1 are involved in the mechanism underlying the pathological changes induced by TSS. After unilateral TSS, significant bilateral mechanical allodynia was induced, as assessed by the von Frey test. The expression of phosphorylated NF-κB (pNF-κB) and CX3CR1 was significantly up-regulated in the bilateral dorsal horn. Immunofluorescence staining demonstrated that pNF-κB and NeuN co-existed, implying that the NF-κB pathway is predominantly activated in neurons following TSS. Administration of either the NF-κB inhibitor ammonium pyrrolidine dithiocarbamate or a CX3CR1-neutralizing antibody blocked the development and maintenance of neuropathic pain. In addition, blockade of NF-κB down-regulated the expression of CX3CL1-CX3CR1 signaling, and conversely the CX3CR1-neutralizing antibody also down-regulated pNF-κB. These findings suggest an involvement of NF-κB and the CX3CR1 signaling network in the development and maintenance of TSS-induced mechanical allodynia. Our work suggests the potential clinical application of NF-κB inhibitors or CX3CR1-neutralizing antibodies in treating pathological pain.
Animals
;
Antibodies
;
therapeutic use
;
Antioxidants
;
therapeutic use
;
CX3C Chemokine Receptor 1
;
immunology
;
metabolism
;
Cytokines
;
metabolism
;
Disease Models, Animal
;
Enzyme Inhibitors
;
therapeutic use
;
Ganglia, Spinal
;
drug effects
;
metabolism
;
Hyperalgesia
;
etiology
;
metabolism
;
Nerve Tissue Proteins
;
metabolism
;
Pain Threshold
;
physiology
;
Physical Stimulation
;
adverse effects
;
Proline
;
analogs & derivatives
;
therapeutic use
;
Rats
;
Rats, Sprague-Dawley
;
Sciatic Nerve
;
physiology
;
Signal Transduction
;
physiology
;
Spinal Cord
;
drug effects
;
metabolism
;
Thiocarbamates
;
therapeutic use
;
Up-Regulation
;
drug effects
;
physiology

Result Analysis
Print
Save
E-mail