1.Preparation and application of bovine CD4 monoclonal antibodies.
Wunjun KONG ; Yueshu ZHU ; Zhengzhong XU ; Chengkun ZHENG ; Xiang CHEN ; Xinan JIAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):450-455
Objective To prepare monoclonal antibodies against bovine CD4 and identify their basic biological characteristics. Methods Recombinant bovine CD4 (rHis-BoCD4 and rGST-BoCD4) was successfully expressed and purified by constructing a prokaryotic plasmid of bovine CD4 gene. The bovine CD4 monoclonal antibody was produced using hybridoma technology. The subtype and potency of the monoclonal antibody were identified and analyzed by ELISA, while specificity was analyzed through indirect immunofluorescence assay (IFA) and Western-blot. Results Four hybridoma cell lines, namely, 1H4, 6A10, 3F9 and 4G10, stably secreting monoclonal antibodies against BoCD4 were successfully obtained. The subclasses of the monoclonal antibodies subclass 6A10 was IgG2b and the rest of the monoclonal antibodies were of IgM type. Western-blot results showed that the four anti-bovine CD4 mAb strains were able to specifically bind to the bovine CD4 protein expressed in vitro. Indirect immunofluorescence assay showed that four monoclonal antibodies were able to specifically recognize the natural bovine CD4 protein. Flow cytometry assay showed that 3F9 was best to recognize bovine natural CD4 molecules. Conclusion Four monoclonal antibody strains with high specificity to natural bovine CD4 protein were successfully prepared, which lays the foundation for the subsequent studies on the function of bovine CD4 and diagnosis and treatment of bovine T-lymphocyte diseases.
Animals
;
Antibodies, Monoclonal/isolation & purification*
;
Cattle
;
CD4 Antigens/genetics*
;
Hybridomas/immunology*
;
Antibody Specificity/immunology*
;
Mice
;
Mice, Inbred BALB C
;
Enzyme-Linked Immunosorbent Assay
;
Fluorescent Antibody Technique, Indirect
2.Prokaryotic expression, purification and immunogenicity of SARS-CoV-2 omicron variant nucleocapsid protein.
Zewen TU ; Quansheng WANG ; Shiguo LIU ; Haosen LIU ; Chunyan ZENG ; Juanjuan XIE ; Mingzhi LI ; Jingcai LI ; Min WANG ; Shiqi WENG ; Lumei KANG ; Lingbao KONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):735-743
Objective The study aims to investigate the immunological functions of the nucleocapsid (N) protein of the novel coronavirus Omicron (BA.1, BA.2) and evaluate the differences among different N proteins of mutant strains in immunogenicity. Methods By aligning sequences, the mutation sites of the Omicron (BA.1, BA.2) N protein relative to prototype strain of the novel coronavirus (Wuhan-Hu-1) were determined. The pET-28a-N-Wuhan-Hu-1 plasmid was used as template to construct pET-28a-BA.1/BA.2-N through single point mutation or homologous recombination. The three kinds of N protein were expressed in prokaryotic system, purified through Ni-NTA affinity chromatography, and then immunized into mice. The titer and reactivity of the polyclonal antibody, as well as the expression level of IL-1β and IFN-γ in mouse spleen cells, were detected using indirect ELISA and Western blot assay. Results The constructed prokaryotic expression plasmids were successfully used to express the Wuhan-Hu-1 N, BA.1 N, and BA.2 N proteins in E.coli BL21(DE3) at 37 DegreesCelsius for 4 hours. The indirect ELISA test showed that the titers of polyclonal antibody prepared by three N proteins were all 1:51 200. All three N proteins can increase the expression of IFN-γ and IL-1β cytokines, but the effect of Omicron N protein in activing two cytokines was more obvious than that of Wuhan-Hu-1 N protein. Conclusion The study obtained three new coronavirus N proteins and polyclonal antibodies, and confirmed that mutations in the amino acid sites of the N protein can affect its immunogenicity. This provides a basis for developing rapid diagnostic methods targeting N protein of different novel coronavirus variants.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
Coronavirus Nucleocapsid Proteins/immunology*
;
Nucleocapsid Proteins/isolation & purification*
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Mice, Inbred BALB C
;
Interferon-gamma/metabolism*
;
Interleukin-1beta/metabolism*
;
Female
;
Escherichia coli/metabolism*
;
Mutation
;
Humans
3.A truncated N protein-based ELISA method for the detection of antibodies against porcine deltacoronavirus.
Dongsheng WANG ; Ruiming YU ; Liping ZHANG ; Yingjie BAI ; Xia LIU ; Yonglu WANG ; Xiaohua DU ; Xinsheng LIU
Chinese Journal of Biotechnology 2025;41(7):2760-2773
This study aims to establish an antibody detection method for porcine deltacoronavirus (PDCoV). The recombinant proteins PDCoV-N1 and PDCoV-N2 were expressed via the prokaryotic plasmid pColdII harboring the N gene sequence of the PDCoV strain CH/XJYN/2016. The reactivity and specificity of PDCoV-N1 and PDCoV-N2 with anti-PEDV sera were analyzed after the recombinant proteins were analyzed by SDS-PAGE and purified by the Ni-NTA Superflow Cartridge. Meanwhile, Western blotting and indirect immunofluorescence assay were carried out separately to validate the recombinant proteins PDCoV-N1 and PDCoV-N2. Finally, we established an indirect ELISA method based on the recombinant protein PDCoV-N2 after optimizing the conditions and tested the sensitivity, specificity, and reproducibility of the method. Then, the established method was employed to examine 102 clinical serum samples. The recombinant protein PDCoV-N2 showed low cross-reactivity with anti-PEDV sera. The optimal conditions of the indirect ELISA method based on PDCoV-N2 were as follows: the antigen coating concentration of 1.25 μg/mL and coating at 37 ℃ for 1 h; blocking by BSA overnight at 4 ℃; serum sample dilution at 1:50 and incubation at 37 ℃ for 1 h; secondary antibody dilution at 1:80 000 and incubation at 37 ℃ for 1 h; color development with TMB chromogenic solution at 37 ℃ for 10 min. The S/P value ≥ 0.45, ≤0.38, and between 0.45 and 0.38 indicated that the test sample was positive, negative, and suspicious, respectively. The testing results of the antisera against porcine epidemic diarrhea virus (PEDV), porcine circovirus 2 (PCV2), transmissible gastroenteritis virus (TGEV), foot-and-mouth disease virus (FMDV), and African swine fever virus (ASFV) showed that the S/P values were all less than 0.38. The testing results of the 800-fold diluted anti-PDCoV sera were still positive. The results of the inter- and intra-batch tests showed that the coefficients of variation of this method were less than 10%. Clinical serum sample test results showed the coincidence rate between this method and neutralization test was 94.12%. In this study, an ELISA method for the detection of anti-PDCoV antibodies was successfully established based on the truncated N protein of PDCoV. This method is sensitive, specific, stable, and reproducible, serving as a new method for the clinical diagnosis of PDCoV.
Animals
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Swine
;
Antibodies, Viral/blood*
;
Recombinant Proteins/genetics*
;
Deltacoronavirus/isolation & purification*
;
Coronavirus Infections/virology*
;
Swine Diseases/diagnosis*
;
Coronavirus Nucleocapsid Proteins
;
Sensitivity and Specificity
4.An electrostatically coupled polypeptide affinity multimodal chromatography medium for the purification of antibodies and their separation efficiency.
Yuxuan CHENG ; Liuyang WANG ; Kaixuan JIANG ; Songping ZHANG ; Hongbo YAN ; Jian LUO
Chinese Journal of Biotechnology 2025;41(8):3262-3274
As the need for antibody production rises, there is an urgent need to lower the costs and enhance the efficiency of the separation process. Currently, the chromatographic media used for antibody separation and purification often focus on individual properties of antibodies, such as affinity, hydrophobicity, and charge, leading to issues like low purification efficiency or inadequate adsorption capacity. To address this, an electrostatically coupled polypeptide affinity medium (FD7-3, 5-diaminobenzoic acid n-sepharose, FD7-DA-Sepharose) was developed for rapid purification of antibodies from cell culture supernatant. This medium utilized 3, 5-diaminobenzoic acid as a spacer to attach the heptapeptide-affinity ligand (FYEILHD, FD7) to agarose microspheres. Antibodies could be adsorbed through charge interactions with the carboxyl functional group of the FD7-DA-Sepharose spacer, while FD7 enhanced electrostatic coupling and affinity adsorption through synergistic effects, significantly increasing the adsorption capacity while maintaining the affinity and specificity. The influences of pH and ionic strength on adsorption capacity were investigated with human immunoglobulin as a model protein. The static adsorption capacity (Qm) of FD7-DA-Sepharose in the solution of pH 6.0 reached 67.73 mg/mL, representing a 52.68% increase compared with that (44.36 mg/mL) of the commercial Protein A affinity medium. Furthermore, the elution conditions for FD7-DA- Sepharose were mild (20 mmol/L PB, 0.5 mol/L NaCl, pH 6.0), in contrast to the harsh acidic elution (pH 2.7-3.6) typically associated with Protein A, which can damage antibody integrity. The FD7-DA-Sepharose medium was then employed to purify antibodies from cell culture supernatant, achieving the yield of 94.8% and the purity of 98.4%. The secondary structure of the purified antibody was determined by circular dichroism spectroscopy. The results demonstrated that FD7-DA-Sepharose enabled efficient purification of antibodies from cell culture supernatant, which provided a cost-effective solution (approximately one-third the price of commercial Protein A affinity medium) with gentle elution conditions that preserve the natural conformation of antibodies. This approach paves a novel, economical, and efficient way for the separation and purification of antibodies from cell culture supernatant.
Chromatography, Affinity/methods*
;
Static Electricity
;
Humans
;
Sepharose/analogs & derivatives*
;
Peptides/chemistry*
;
Adsorption
;
Antibodies/isolation & purification*
5.Re-detectable positive SARS-CoV-2 RNA tests in patients who recovered from COVID-19 with intestinal infection.
Wanyin TAO ; Xiaofang WANG ; Guorong ZHANG ; Meng GUO ; Huan MA ; Dan ZHAO ; Yong SUN ; Jun HE ; Lianxin LIU ; Kaiguang ZHANG ; Yucai WANG ; Jianping WENG ; Xiaoling MA ; Tengchuan JIN ; Shu ZHU
Protein & Cell 2021;12(3):230-235
6.Single cell RNA and immune repertoire profiling of COVID-19 patients reveal novel neutralizing antibody.
Fang LI ; Meng LUO ; Wenyang ZHOU ; Jinliang LI ; Xiyun JIN ; Zhaochun XU ; Liran JUAN ; Zheng ZHANG ; Yuou LI ; Renqiang LIU ; Yiqun LI ; Chang XU ; Kexin MA ; Huimin CAO ; Jingwei WANG ; Pingping WANG ; Zhigao BU ; Qinghua JIANG
Protein & Cell 2021;12(10):751-755
7.Establishment of fluorescence immunochromatography detection for cytoskeleton-associated protein 4.
Lu ZHANG ; Yunlong WANG ; Yulin LI ; Jichuang WANG ; Yinyin YU ; Heng ZHANG ; Yiqing ZHANG ; Lei CHENG ; Shoutao ZHANG
Chinese Journal of Biotechnology 2020;36(6):1216-1222
A rapid and simple method to detect tumor markers in liver cancer was established by combining immunochromatography technique with fluorescent microsphere labeling. According to the principle of double antibody sandwich, the cytoskeleton-associated protein 4 (CKAP4) paired antibody was used as the labeled and coated antibody, and the goat anti-rabbit polyclonal antibody was used as the quality control line coated antibody in the preparation of the CKAP4 fluorescent immunochromatographic test strips. After the preparation, the test strips were evaluated on various performance indicators, such as linearity, precision and stability. The CKAP4 immunochromatographic strip prepared by time-resolved fluorescent microspheres had high sensitivity, and good specificity. Its precision was within 15%, recovery between 85% and 115%, and linear range between 25 and 1 000 pg/mL. The test strip could be kept stable at 37 °C for 20 days, and it correlated well with commercial ELISA kits. The CKAP4 fluorescence immunochromatography method can quantitatively detect the content of CKAP4 in serum. Furthermore, it is rapid, sensitive, simple, economical and single-person operation. This method has the potential of becoming a new method for the diagnosis and treatment of liver cancer.
Animals
;
Antibodies
;
metabolism
;
Chromatography, Affinity
;
Fluorescence
;
Humans
;
Liver Neoplasms
;
diagnosis
;
Membrane Proteins
;
isolation & purification
;
Molecular Diagnostic Techniques
;
instrumentation
;
methods
;
Sensitivity and Specificity
8.Clinical observation of 6 severe COVID-19 patients treated with plasma exchange or tocilizumab.
Song LUO ; Lijuan YANG ; Chun WANG ; Chuanmiao LIU ; Dianming LI
Journal of Zhejiang University. Medical sciences 2020;49(2):227-231
OBJECTIVE:
To observe the clinical effect of plasma exchange and tocilizumab in treatment of patients with severe coronavirus disease 2019 (COVID-19).
METHODS:
Six patients with severe COVID-19 admitted in First Affiliated Hospital of Bengbu Medical College from January 25 to February 25, 2020. Three patients were treated with plasma exchange and three patients were treated with tocilizumab. The effect on excessive inflammatory reaction of plasma exchange and tocilizumab was observed.
RESULTS:
The C-reactive protein (CRP) and IL-6 levels were significantly decreased and the lymphocyte and prothrombin time were improved in 3 patients after treatment with plasma exchange; while inflammation level was not significantly decreased, and lymphocyte and prothrombin time did not improve in 3 patients treated with tocilizumab.
CONCLUSIONS
For severe COVID-19 patients with strong inflammatory reaction, plasma exchange may be preferred.
Antibodies, Monoclonal, Humanized
;
administration & dosage
;
Betacoronavirus
;
isolation & purification
;
Coronavirus Infections
;
blood
;
immunology
;
therapy
;
Cytokine Release Syndrome
;
therapy
;
Humans
;
Pandemics
;
Plasma Exchange
;
standards
;
Pneumonia, Viral
;
blood
;
immunology
;
therapy
;
Prothrombin Time
;
Treatment Outcome
9.Preparation of anti-hCG antibody-like molecule by using a RAD peptide display system.
Mengwen LIU ; Mei WANG ; Qiong WANG ; Huawei XIN
Chinese Journal of Biotechnology 2019;35(5):871-879
By using an RAD peptide display system derived from the ATPase domain of recombinase RadA of Pyrococcus furiosus, an anti-hCG antibody-like molecule was prepared by grafting an hCG-binding peptide to the RAD scaffold. After linking to sfGFP gene, a gene of hCG peptide-grafted RAD was synthesized and cloned into a bacterial expression vector (pET30a-RAD/hCGBP-sfGFP). The vector was transformed into Escherichia coli, and expression of the fusion protein was induced. After isolation and purification of the fusion protein, its binding affinity and specificity to hCG were determined by using a process of immunoabsorption followed by GFP fluorescence measurement. A comparison of hCG-binding activity with a similarly grafted single-domain antibody based on a universal scaffold was performed. The measurement of hCG-binding affinity and specificity revealed that the grafted RAD has an optimally high binding affinity and specificity to hCG, which are better than the grafted single-domain antibody. Moreover, the affinity and specificity of grafted RAD molecule are comparable to those of a commercial monoclonal antibody. In addition, the hCG-binding peptide-grafted RAD molecule has a relatively high biochemical stability, making it a good substitute for antibody with potential application.
Antibodies, Monoclonal
;
chemistry
;
isolation & purification
;
metabolism
;
Antibody Specificity
;
DNA-Binding Proteins
;
genetics
;
metabolism
;
Escherichia coli
;
genetics
;
Escherichia coli Proteins
;
metabolism
;
Humans
;
Peptides
;
Recombinant Fusion Proteins
;
genetics
;
metabolism
10.Development of a colloidal gold-based immunochromatographic strip for rapid detection of Rice stripe virus.
De-Qing HUANG ; Rui CHEN ; Ya-Qin WANG ; Jian HONG ; Xue-Ping ZHOU ; Jian-Xiang WU
Journal of Zhejiang University. Science. B 2019;20(4):343-354
Rice stripe virus (RSV) causes dramatic losses in rice production worldwide. In this study, two monoclonal antibodies (MAbs) 16E6 and 11C1 against RSV and a colloidal gold-based immunochromatographic strip were developed for specific, sensitive, and rapid detection of RSV in rice plant and planthopper samples. The MAb 16E6 was conjugated with colloidal gold and the MAb 11C1 was coated on the test line of the nitrocellulose membrane of the test strip. The specificity of the test strip was confirmed by a positive reaction to RSV-infected rice plants and small brown planthopper (SBPH), and negative reactions to five other rice viruses, healthy rice plants, four other vectors of five rice viruses, and non-viruliferous SBPH. Sensitivity analyses showed that the test strip could detect the virus in RSV-infected rice plant tissue crude extracts diluted to 1:20 480 (w/v, g/mL), and in individual viruliferous SBPH homogenate diluted to 1:2560 (individual SPBH/μL). The validity of the developed strip was further confirmed by tests using field-collected rice and SBPH samples. This newly developed test strip is a low-cost, fast, and easy-to-use tool for on-site detection of RSV infection during field epidemiological studies and paddy field surveys, and thus can benefit decision-making for RSV management in the field.
Antibodies, Monoclonal/chemistry*
;
China
;
Chromatography, Affinity/methods*
;
Collodion/chemistry*
;
Colloids/chemistry*
;
Gold Colloid/chemistry*
;
Materials Testing
;
Membranes, Artificial
;
Oryza/virology*
;
Plant Diseases/virology*
;
Reproducibility of Results
;
Sensitivity and Specificity
;
Species Specificity
;
Tenuivirus/isolation & purification*

Result Analysis
Print
Save
E-mail