1.Establishment of a sandwich ELISA method for CHGA in saliva samples and its preliminary application in stress detection.
Niqi SHAN ; Shanshou LIU ; Yuling WANG ; Hui LIU ; Shuai WANG ; Yilin WU ; Chujun DUAN ; Hanyin FAN ; Yangmengjie JING ; Ran ZHUANG ; Chunmei ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(4):324-330
Objective To establish a sandwich enzyme-linked immunosorbent assay (ELISA) method for the quantitative detection of Chromogranin A (CHGA) in saliva, and to explore its preliminary application in the testing of saliva samples. Methods Recombinant human CHGA protein was used to immunize BALB/c mice, and monoclonal antibodies (mAbs) were prepared and screened using conventional hybridoma technology. A double-antibody sandwich ELISA detection method was constructed, and the matrix effect of saliva samples was optimized. This method was then applied to detect the concentration of CHGA in the saliva of stressed individuals. Results Twenty-one stable hybridoma cell lines secreting high affinity anti-human CHGA antibodies were obtained. A pair of detection antibodies with the best effect was selected, and the optimal coating concentration was determined to be 10 μg/mL, with the optimal dilution of detection antibodies being 1:32 000. The accuracy and reproducibility of this method were verified, with both intra-batch and inter-batch variation coefficients less than 15×, and the recovery rate between 80× and 120×. The matrix effect was further optimized to make it suitable for saliva sample detection. Saliva samples from individuals in different stress states were collected, and the CHGA levels were detected using the method established in this study, indicating its potential to reflect the intensity of stress. Conclusion A reliable saliva CHGA ELISA detection method has been successfully established, and its potential as a biomarker in stress-related research has been preliminarily explored.
Saliva/metabolism*
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Humans
;
Animals
;
Mice, Inbred BALB C
;
Mice
;
Chromogranin A/immunology*
;
Antibodies, Monoclonal/immunology*
;
Female
;
Male
;
Reproducibility of Results
;
Adult
2.A novel fully human LAG-3 monoclonal antibody LBL-007 combined with PD-1 antibody inhibits proliferation, migration and invasion of tumor cells via blocking NF-κB pathway.
Huinan ZHOU ; Jianfei LIU ; Chenglin WU ; Kewei QIN ; Lijun ZHOU
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):398-405
Objective To investigate the effects of LBL-007, a novel fully human lymphocyte activation gene 3 (LAG-3) monoclonal antibody, in combination with programmed cell death protein 1 (PD-1) antibody, on the invasion, migration and proliferation of tumor cells, and to elucidate the underlying mechanisms. Methods Human lymphocyte cells Jurkat were co-cultured with A549 and MGC803 tumor cell lines and treated with the isotype control antibody human IgG, LBL-007, anti-PD-1 antibody BE0188, or tumor necrosis factor-alpha (TNF-α, the NF-κB signaling pathway agonist). Tumor cell proliferation was assessed using a colony formation assay; invasion was measured by TranswellTM assay; migration was evaluated using a wound healing assay. Western blotting was employed to determine the expression levels of NF-κB pathway-related proteins: IκB inhibitor kinase alpha (Ikkα), phosphorylated Ikkα (p-IKKα), NF-κB subunit p65, phosphorylated p65 (p-p65), NF-κB Inhibitor Alpha (IκBα), phosphorylated IκBα (p-IκBα), matrix metalloproteinase 9 (MMP9), and MMP2. Results Compared with the control and IgG isotype groups, LBL-007 and BE0188 significantly reduced tumor cell proliferation, invasion, and migration. They also decreased the phosphorylation of p-IKKα, p-p65 and p-IκBα, and the expression of MMP9 and MMP2 of tumor cells in the co-culture system. The combined treatment of LBL-007 and BE0188 enhanced inhibitory effects. Treatment with the NF-κB signaling pathway agonist TNF-α reversed the suppressive effects of LBL-007 and BE0188 on tumor cell proliferation, invasion, migration, and NF-κB signaling. Conclusion LBL-007 and anti-PD-1 antibody synergistically inhibit the invasion, migration, and proliferation of A549 and MGC803 tumor cells by blocking the NF-κB signaling pathway.
Humans
;
Cell Proliferation/drug effects*
;
Cell Movement/drug effects*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Neoplasm Invasiveness
;
Antibodies, Monoclonal/pharmacology*
;
Programmed Cell Death 1 Receptor/antagonists & inhibitors*
;
Cell Line, Tumor
;
Antigens, CD/immunology*
;
Lymphocyte Activation Gene 3 Protein
;
A549 Cells
;
I-kappa B Kinase/metabolism*
;
Jurkat Cells
;
Matrix Metalloproteinase 9/metabolism*
3.Prokaryotic expression of mouse LRP16, preparation and identification of rabbit anti-mouse LRP16 polyclonal antibody.
Feifei ZHANG ; Jian LI ; Xiangying XU ; Meiling HAN ; Zhe ZHANG
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):544-551
Objective To investigate prokaryotic expression of the antigen sequence (amino acids 59-145) of mouse leukemia-related protein 16 (LRP16) protein and preparation of rabbit anti-mouse LRP16 polyclonal antibody. Methods The prokaryotic expression plasmid pLS962-LRP16 was constructed by the molecular cloning method and transferred into E.coli Rosetta to express LRP16 protein induced by IPTG. The recombinant protein was purified using Ni-NTA affinity columns followed by gel filtration chromatography. New Zealand white rabbits were immunized with the purified antigen to generate polyclonal antiserum, with antibody titer quantified by ELISA. Antigen-specific IgG was affinity-purified using Sepharose-coupled LRP16 and validated through Western blot and immunofluorescence assays. Results SDS-PAGE analysis confirmed insoluble expression of the LRP16 fusion protein as inclusion bodies. ELISA demonstrated exceptional antiserum titer (1:256 000). Western blot and immunofluorescence verified that the polyclonal antibody could specifically recognize endogenous LRP16 in murine tissues. Conclusion The prokaryotic expression of the LRP16 gene is successfully achieved, and the rabbit anti-mouse LRP16 polyclonal antibody exhibiting high specificity is prepared. This lays the foundation for further studies on the function of the LRP16 gene.
Animals
;
Rabbits
;
Mice
;
Antibodies/immunology*
;
Escherichia coli/metabolism*
;
Enzyme-Linked Immunosorbent Assay
;
Blotting, Western
;
Antibody Specificity
4.Prokaryotic expression, purification and immunogenicity of SARS-CoV-2 omicron variant nucleocapsid protein.
Zewen TU ; Quansheng WANG ; Shiguo LIU ; Haosen LIU ; Chunyan ZENG ; Juanjuan XIE ; Mingzhi LI ; Jingcai LI ; Min WANG ; Shiqi WENG ; Lumei KANG ; Lingbao KONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(8):735-743
Objective The study aims to investigate the immunological functions of the nucleocapsid (N) protein of the novel coronavirus Omicron (BA.1, BA.2) and evaluate the differences among different N proteins of mutant strains in immunogenicity. Methods By aligning sequences, the mutation sites of the Omicron (BA.1, BA.2) N protein relative to prototype strain of the novel coronavirus (Wuhan-Hu-1) were determined. The pET-28a-N-Wuhan-Hu-1 plasmid was used as template to construct pET-28a-BA.1/BA.2-N through single point mutation or homologous recombination. The three kinds of N protein were expressed in prokaryotic system, purified through Ni-NTA affinity chromatography, and then immunized into mice. The titer and reactivity of the polyclonal antibody, as well as the expression level of IL-1β and IFN-γ in mouse spleen cells, were detected using indirect ELISA and Western blot assay. Results The constructed prokaryotic expression plasmids were successfully used to express the Wuhan-Hu-1 N, BA.1 N, and BA.2 N proteins in E.coli BL21(DE3) at 37 DegreesCelsius for 4 hours. The indirect ELISA test showed that the titers of polyclonal antibody prepared by three N proteins were all 1:51 200. All three N proteins can increase the expression of IFN-γ and IL-1β cytokines, but the effect of Omicron N protein in activing two cytokines was more obvious than that of Wuhan-Hu-1 N protein. Conclusion The study obtained three new coronavirus N proteins and polyclonal antibodies, and confirmed that mutations in the amino acid sites of the N protein can affect its immunogenicity. This provides a basis for developing rapid diagnostic methods targeting N protein of different novel coronavirus variants.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
Coronavirus Nucleocapsid Proteins/immunology*
;
Nucleocapsid Proteins/isolation & purification*
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Mice, Inbred BALB C
;
Interferon-gamma/metabolism*
;
Interleukin-1beta/metabolism*
;
Female
;
Escherichia coli/metabolism*
;
Mutation
;
Humans
5.Identification of a nanobody able to catalyze the destruction of the spike-trimer of SARS-CoV-2.
Kai WANG ; Duanfang CAO ; Lanlan LIU ; Xiaoyi FAN ; Yihuan LIN ; Wenting HE ; Yunze ZHAI ; Pingyong XU ; Xiyun YAN ; Haikun WANG ; Xinzheng ZHANG ; Pengyuan YANG
Frontiers of Medicine 2025;19(3):493-506
Neutralizing antibodies have been designed to specifically target and bind to the receptor binding domain (RBD) of spike (S) protein to block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus from attaching to angiotensin converting enzyme 2 (ACE2). This study reports a distinctive nanobody, designated as VHH21, that directly catalyzes the S-trimer into an irreversible transition state through postfusion conformational changes. Derived from camels immunized with multiple antigens, a set of nanobodies with high affinity for the S1 protein displays abilities to neutralize pseudovirion infections with a broad resistance to variants of concern of SARS-CoV-2, including SARS-CoV and BatRaTG13. Importantly, a super-resolution screening and analysis platform based on visual fluorescence probes was designed and applied to monitor single proteins and protein subunits. A spontaneously occurring dimeric form of VHH21 was obtained to rapidly destroy the S-trimer. Structural analysis via cryogenic electron microscopy revealed that VHH21 targets specific conserved epitopes on the S protein, distinct from the ACE2 binding site on the RBD, which destabilizes the fusion process. This research highlights the potential of VHH21 as an abzyme-like nanobody (nanoabzyme) possessing broad-spectrum binding capabilities and highly effective anti-viral properties and offers a promising strategy for combating coronavirus outbreaks.
Single-Domain Antibodies/immunology*
;
Spike Glycoprotein, Coronavirus/metabolism*
;
SARS-CoV-2/immunology*
;
Animals
;
Humans
;
Antibodies, Neutralizing/immunology*
;
Camelus
;
COVID-19/immunology*
;
Antibodies, Viral/immunology*
;
Angiotensin-Converting Enzyme 2
6.Expression and biological characterization of anti-CD63 single-chain variable fragment antibody in Pichia pastoris.
Chinese Journal of Biotechnology 2025;41(4):1440-1454
To prepare antibodies that specifically recognize the conserved domain in the large extracellular loop of the CD63 protein, we expressed anti-CD63 single-chain variable fragment (scFv) antibody in Pichia pastoris in a secreted form. The purified expression product was found to bind specifically with CD63 protein and recognize CD63 on the surface of SK-MEL-28 cells. The variable region of the anti-CD63 monoclonal antibody in an anti-CD63-positive cell line was sequenced. The anti-CD63 scFv consisted of a variable heavy chain and a variable light chain linked by a flexible peptide was then designed. After codon optimization, the gene was synthesized and cloned into the expression plasmid pPICZα-A. The SacI-linearized plasmid was electroporated into P. pastoris X33, and 1% methanol were used to induce the expression of scFv. The fermentation supernatant was purified by Ni column. Anti-CD63 scFv was identified by SDS-PAGE and Western blotting, and its biological activities were analyzed by immunoblotting, immunofluorescence, cell-based ELISA, and flow cytometry. A P. pastoris strain capable of expressing and secreting anti-CD63 scFv was successfully obtained. The antibody had a molecular weight of approximately 30 kDa and specifically recognized CD63 protein. The expression of anti-CD63 scFv in P. pastoris paves the way for the production of anti-CD63 antibodies on a large-scale, which is undoubtedly an economical and effective way of antibody acquisition.
Single-Chain Antibodies/immunology*
;
Humans
;
Tetraspanin 30/immunology*
;
Recombinant Proteins/immunology*
;
Pichia/genetics*
;
Saccharomycetales/metabolism*
7.Immunogenic evaluation of pseudorabies virus gB protein expressed in the baculovirus-insect cell system.
Jin WANG ; Kai WANG ; Ying ZHANG ; Shuzhen TAN ; Shiqi SUN ; Huichen GUO ; Shuanghui YIN ; Jiaqiang NIU
Chinese Journal of Biotechnology 2025;41(7):2694-2706
Pseudorabies (PR) is an infectious disease caused by the pseudorabies virus (PRV), affecting various domesticated and wild animals. Since pigs are the only natural hosts of PRV, PR poses a serious threat to the pig farming industry. Currently, PR is primarily prevented through vaccination with inactivated vaccines or genetically modified attenuated live vaccines. Developing safe and effective genetically engineered vaccines would facilitate the eradication and control of PR. In this study, the PRV vaccine strain Bartha-K61 was used as the reference strain. The gB protein was expressed via the baculovirus-insect cell expression system. Non-denaturing gel electrophoresis confirmed that the gB protein could form a trimeric structure. The purified gB protein was used to immunize mice, and the immune effect was evaluated by a challenge test. The results showed that the gB antigen induced a strong immune response in mice, with the serum-neutralizing antibody titer above 1:70. The lymphocyte stimulation index reached more than 1.29, and the level of (interferon gamma, IFN-γ) release was higher than 100 pg/mL. After immunization, mice were challenged with the virus at a dose of 104 TCID₅₀/mL, 200 μL per mouse, and the clinical protection rate was 100%. Immunohistochemistry, histopathological section, and tissue viral load results showed that the pathological damage and viral load in the gB-immunized group were significantly lower than those in the PBS group. In summary, the gB protein obtained in this study induced strong humoral and cellular immune responses in mice, laying a foundation for developing a recombinant gB protein subunit vaccine.
Animals
;
Mice
;
Baculoviridae/metabolism*
;
Viral Envelope Proteins/biosynthesis*
;
Herpesvirus 1, Suid/genetics*
;
Pseudorabies/immunology*
;
Swine
;
Pseudorabies Vaccines/genetics*
;
Antibodies, Viral/blood*
;
Insecta/cytology*
;
Mice, Inbred BALB C
;
Female
;
Viral Vaccines/immunology*
8.Preparation and immunogenicity evaluation of ferritin nanoparticles conjugated with African swine fever virus p30 protein.
Yue ZHANG ; Yi RU ; Rongzeng HAO ; Yang YANG ; Longhe ZHAO ; Yajun LI ; Rui YANG ; Bingzhou LU ; Haixue ZHENG
Chinese Journal of Biotechnology 2024;40(12):4509-4520
This study developed ferritin-based nanoparticles carrying the African swine fever virus (ASFV) p30 protein and evaluated their immunogenicity, aiming to provide an experimental basis for the research on nanoparticle vaccines against ASFV. Initially, the gene sequences encoding the p30 protein and SpyTag were fused and inserted into the pCold-I vector to create the pCold-p30 plasmid. The gene sequences encoding SpyCatcher and ferritin were fused and then inserted into the pET-28a(+) vector to produce the pET-F-np plasmid. Both plasmids were expressed in Escherichia coli upon induction. Subsequently, the affinity chromatography-purified p30 protein was conjugated with ferritin in vitro, and the p30-ferritin (F-p30) nanoparticles were purified by size-exclusion chromatography. The morphology and structural integrity of F-p30 nanoparticles were examined by a particle size analyzer and transmission electron microscopy. Mice were immunized with F-p30 nanoparticles, and the humoral and cellular immune responses were assessed. The results showed that F-p30 nanoparticles were successfully prepared, with the particle size of approximately 20 nm. F-p30 nanoparticles were efficiently internalized by bone marrow-derived dendritic cells (BMDCs) cells in vitro. Compared with the p30 protein alone, F-p30 nanoparticles induced elevated levels of specific antibodies and cytokines in mice and stimulated the proliferation of follicular helper T cell (TFH) and germinal center B cell (GCB) in lymph nodes as well as CD4+ and CD8+ T cells in the spleen. In conclusion, we successfully prepared F-p30 nanoparticles which significantly enhanced the immunogenicity of p30 protein, giving insights into the development of vaccines against ASFV.
Animals
;
Nanoparticles/chemistry*
;
Mice
;
African Swine Fever Virus/genetics*
;
Ferritins/chemistry*
;
Swine
;
Viral Vaccines/genetics*
;
African Swine Fever/immunology*
;
Mice, Inbred BALB C
;
Viral Proteins/genetics*
;
Escherichia coli/metabolism*
;
Dendritic Cells/immunology*
;
Immunogenicity, Vaccine
;
Antibodies, Viral/blood*
;
Female
;
Capsid Proteins/genetics*
9.Progress in shark single-domain antibody.
Chinese Journal of Biotechnology 2020;36(6):1069-1082
Monoclonal antibody (mAb) is an important biological macromolecule and widely used in immune detection, in vitro diagnostics, and drug discovery. However, the inherent properties of mAb restrict its further development, such as high molecular weight and complex structure. Therefore, there is an urgent need to develop alternatives for mAb. Various types of miniaturized antibodies have been developed, among which the variable domain of immunoglobulin new antigen receptor (VNAR) is very attractive. The shark single-domain antibody, also known as shark VNAR, is an antigen-binding domain obtained by genetic engineering technology based on the immunoglobulin new antigen receptor (IgNAR) that naturally exists in selachimorpha. It has a molecular weight of 12 kDa, which is the smallest antigen-binding domain found in the known vertebrates at present. Compared with mAb, the shark VNAR exhibits various superiorities, such as low molecular weight, high affinity, tolerance to the harsh environment, good water solubility, strong tissue penetration, and recognition of the hidden epitopes. It has attracted wide attention in the fields of immunochemical reagents and drug discovery. In this review, various aspects of shark VNAR are elaborated, including the structural and functional characteristics, generating and humanization techniques, affinity maturation strategies, application fields, advantages and disadvantages, and prospects.
Animals
;
Antibodies, Monoclonal
;
immunology
;
Antibodies, Monoclonal, Humanized
;
immunology
;
Antigens
;
Epitopes
;
metabolism
;
Protein Domains
;
immunology
;
Receptors, Antigen
;
chemistry
;
immunology
;
Sharks
10.Highly sensitive serological approaches for Pepino mosaic virus detection.
Wan-Qin HE ; Jia-Yu WU ; Yi-Yi REN ; Xue-Ping ZHOU ; Song-Bai ZHANG ; Ya-Juan QIAN ; Fang-Fang LI ; Jian-Xiang WU
Journal of Zhejiang University. Science. B 2020;21(10):811-822
Pepino mosaic virus (PepMV) causes severe disease in tomato and other Solanaceous crops around globe. To effectively study and manage this viral disease, researchers need new, sensitive, and high-throughput approaches for viral detection. In this study, we purified PepMV particles from the infected Nicotiana benthamiana plants and used virions to immunize BALB/c mice to prepare hybridomas secreting anti-PepMV monoclonal antibodies (mAbs). A panel of highly specific and sensitive murine mAbs (15B2, 8H6, 23D11, 20D9, 3A6, and 8E3) could be produced through cell fusion, antibody selection, and cell cloning. Using the mAbs as the detection antibodies, we established double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), Dot-ELISA, and Tissue print-ELISA for detecting PepMV infection in tomato plants. Resulting data on sensitivity analysis assays showed that both DAS-ELISA and Dot-ELISA can efficiently monitor the virus in PepMV-infected tissue crude extracts when diluted at 1:1 310 720 and 1:20 480 (weight/volume ratio (w/v), g/mL), respectively. Among the three methods developed, the Tissue print-ELISA was found to be the most practical detection technique. Survey results from field samples by the established serological approaches were verified by reverse transcription polymerase chain reaction (RT-PCR) and DNA sequencing, demonstrating all three serological methods are reliable and effective for monitoring PepMV. Anti-PepMV mAbs and the newly developed DAS-ELISA, Dot-ELISA, and Tissue print-ELISA can benefit PepMV detection and field epidemiological study, and management of this viral disease, which is already widespread in tomato plants in Yunnan Province of China.
Animals
;
Antibodies, Monoclonal/immunology*
;
China
;
Cloning, Molecular
;
Enzyme-Linked Immunosorbent Assay/methods*
;
Female
;
Hybridomas
;
Solanum lycopersicum/virology*
;
Mice
;
Mice, Inbred BALB C
;
Plant Diseases/virology*
;
Potexvirus/metabolism*
;
Sensitivity and Specificity
;
Nicotiana

Result Analysis
Print
Save
E-mail