1.Altered expression of 15-hydroxyprostaglandin dehydrogenase in chronic rhinosinusitis with nasal polyps.
Shan CHEN ; Jingcai CHEN ; Jianjun CHEN ; Yanjun WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(11):891-896
Objective:To investigate the expression level and regulatory mechanism of 15-hydroxyprostaglandin dehydrogenase(HPGD) in chronic rhinosinusitis with nasal polyps(CRSwNP). Methods:The expression pattern and level of HPGD in CRSwNP and control was observed using immunofluorescence, and western blot was used for analysis of HPGD expression in nasal polyp tissues. The effect of recombinant human high mobility group box-1(HMGB1) on HPGD expression in primary human nasal epithelial cells was observed, and the potential blocking effect of RAGE neutralizing antibody on HMGB1-induced HPGD expression was investigated. Results:The expression of HPGD was elevated in CRSwNP patients compared to the control, while the protein mainly localized at CD68-positive cells and epithelial cells. Recombinant human HMGB1 stimulated an increase in HPGD expression in primary human nasal mucosal epithelial cells at a time-dependent manner. Additionally, increased phosphorylation levels of MEK and elevated RAGE expression were also observed at 12 hours, but decreased at 24 hours after the incubation of HMGB1. The increase in the expression of HPGD induced by HMGB1 in primary human nasal epithelial cells was partly inhibited with RAGE neutralizing antibody. Conclusion:Elevated HPGD expression is observed in CRSwNP, predominantly in macrophages and epithelial cells. HMGB1 regulates HPGD expression through the RAGE-MEK signaling pathway, potentially providing a new target for future regulation of PGE2levels in CRSwNP.
Humans
;
Antibodies, Neutralizing/metabolism*
;
Chronic Disease
;
HMGB1 Protein/metabolism*
;
Mitogen-Activated Protein Kinase Kinases/metabolism*
;
Nasal Mucosa/metabolism*
;
Nasal Polyps/metabolism*
;
Rhinitis
2.Glycosylation, glycan receptors recognition of SARS-CoV-2 and discoveries of glycan inhibitors against SARS-CoV-2.
Weiyan YU ; Yueqiang XU ; Jianjun LI ; Zhimin LI ; Qi WANG ; Yuguang DU
Chinese Journal of Biotechnology 2022;38(9):3157-3172
COVID-19 represents the most serious public health event in the past few decades of the 21st century. The development of vaccines, neutralizing antibodies, and small molecule chemical agents have effectively prevented the rapid spread of COVID-19. However, the continued emergence of SARS-CoV-2 variants have weakened the efficiency of these vaccines and antibodies, which brought new challenges for searching novel anti-SARS-CoV-2 drugs and methods. In the process of SARS-CoV-2 infection, the virus firstly attaches to heparan sulphate on the cell surface of respiratory tract, then specifically binds to hACE2. The S protein of SARS-CoV-2 is a highly glycosylated protein, and glycosylation is also important for the binding of hACE2 to S protein. Furthermore, the S protein is recognized by a series of lectin receptors in host cells. These finding implies that glycosylation plays important roles in the invasion and infection of SARS-CoV-2. Based on the glycosylation pattern and glycan recognition mechanisms of SARS-CoV-2, it is possible to develop glycan inhibitors against COVID-19. Recent studies have shown that sulfated polysaccharides originated from marine sources, heparin and some other glycans display anti-SARS-CoV-2 activity. This review summarized the function of glycosylation of SARS-CoV-2, discoveries of glycan inhibitors and the underpinning molecular mechanisms, which will provide guidelines to develop glycan-based new drugs against SARS-CoV-2.
Antibodies, Neutralizing
;
Glycosylation
;
Heparin
;
Heparitin Sulfate
;
Humans
;
Polysaccharides/chemistry*
;
Receptors, Mitogen/metabolism*
;
SARS-CoV-2
;
Spike Glycoprotein, Coronavirus/metabolism*
;
COVID-19 Drug Treatment
3.SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies: a review.
Yulei CHEN ; Jinjin LIN ; Peiyi ZHENG ; Minjie CAO ; Tengchuan JIN
Chinese Journal of Biotechnology 2022;38(9):3173-3193
Coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), with strong contagiousness, high susceptibility and long incubation period. cell entry by SARS-CoV-2 requires the binding between the receptor-binding domain of the viral spike protein and the cellular angiotensin-converting enzyme 2 (ACE2). Here, we briefly reviewed the mechanisms underlying the interaction between SARS-CoV-2 and ACE2, and summarized the latest research progress on SARS-CoV-2 neutralizing monoclonal antibodies and nanobodies, so as to better understand the development process and drug research direction of COVID-19. This review may facilitate understanding the development of neutralizing antibody drugs for emerging infectious diseases, especially for COVID-19.
Angiotensin-Converting Enzyme 2
;
Antibodies, Monoclonal
;
Antibodies, Neutralizing
;
Antibodies, Viral
;
COVID-19
;
Humans
;
Peptidyl-Dipeptidase A/metabolism*
;
Protein Binding
;
SARS-CoV-2
;
Single-Domain Antibodies
;
Spike Glycoprotein, Coronavirus/metabolism*
4.IL-6 Regulates the Chemosensitivity of Drug-Resistant Multiple Myeloma Cell Lines to Bortezomib through STAT3/Notch Signaling Pathway.
Ying LIU ; Jing-Zhe SUI ; Li-Hua ZHU ; Yi DAI ; Hai-Qun DONG ; Peng CHENG
Journal of Experimental Hematology 2022;30(5):1474-1481
OBJECTIVE:
To investigate the effect of interleukin-6 (IL-6) on the chemosensitivity of drug-resistant multiple myeloma (MM) cell lines to bortezomib (BTZ) and its mechanism.
METHODS:
Peripheral blood samples were collected from patients with BTZ-resistant MM before and after treatment. Human MM cell lines KM3 and KM3/BTZ were cultured in vitro. ELISA was used to detect the content of IL-6 in peripheral blood of MM patients, KM3 and KM3/BTZ cells. CCK-8 assay was used to detect the drug sensitivity of KM3 and KM3 / BTZ cells to BTZ. KM3 / BTZ cells were divided into KM3/BTZ control group (normal culture for 48 h), IL-6 neutralizing antibody Anti-IL-6 group (500 ng/ml Anti-IL-6 treated for 48 h), BTZ group (300 ng/ml BTZ treated for 48 h), BTZ + Anti-IL-6 group (300 ng/ml BTZ and 500 ng/ml Anti-IL-6 treated for 48 h). The proliferation activity of KM3 / BTZ cells was detected by CCK-8 assay. The cell cycle distribution of KM3/BTZ cells was detected by flow cytometry. The apoptosis of KM3/BTZ cells was detected by Annexin V-FITC/PI double staining. The mRNA expression levels of IL-6, Notch1, signal transducer and activator of transcription 3 (STAT3) in KM3/BTZ cells were detected by real-time fluorescent quantitative PCR (qRT-PCR), and the protein expression levels of IL-6, Notch1, STAT3 in KM3/BTZ cells were detected by Western blot.
RESULTS:
The level of IL-6 in peripheral blood of patients with BTZ-resistant MM after treatment was significantly higher than that before treatment (P<0.05). The level of IL-6 in KM3/BTZ cells was significantly higher than that in KM3 cells (P<0.05). The sensitivity of KM3/BTZ cells to BTZ was significantly lower than that of KM3 cells (P<0.05), and the resistance index (RI) was 19.62. Anti-IL-6 and BTZ could inhibit the proliferation of KM3 / BTZ cells, block cell cycle, and induce apoptosis (P<0.05). Compared with single drug treatment, the combined effect of Anti-IL-6 and BTZ was more obvious on KM3/BTZ cells (P<0.05), and significantly down regulated the mRNA and protein expression of IL-6, Notch1 and STAT3 in KM3/BTZ cells (P<0.05).
CONCLUSION
Antagonizing IL-6 can increase the chemosensitivity of MM cells to BTZ, and IL-6 may reduce the sensitivity of MM cells to BTZ through STAT3/Notch signaling pathway.
Antibodies, Neutralizing/therapeutic use*
;
Apoptosis
;
Bortezomib/therapeutic use*
;
Cell Line, Tumor
;
Cell Proliferation
;
Humans
;
Interleukin-6/metabolism*
;
Multiple Myeloma/drug therapy*
;
RNA, Messenger
;
STAT3 Transcription Factor/metabolism*
;
Signal Transduction
;
Sincalide/therapeutic use*
5.The regulatory function of tumor-infiltrating Th9 cells to anti-tumor activity of CD8(+) T cells in patients with gastric cancer.
Pei Sheng SUN ; Zheng Jie GAO ; Long Xin FAN ; Ya Fei LIU ; Bing He CHEN ; Shu Zhen MU ; Zheng Qiang YAN
Chinese Journal of Oncology 2022;44(11):1186-1193
Objective: To investigate the levels of Th9 cells and interleukin-9 (IL-9), and to assess the regulatory activity of Th9/IL-9 to anti-tumor immune response in patients with gastric cancer. Methods: Thirty-four patients with gastric cancer who received operation in the First Affiliated Hospital of Xinxiang Medical University between October 2018 and August 2019 were included. Twenty individuals who received physical examination in the same period were also enrolled. Peripheral blood was collected, and then plasma and peripheral blood mononuclear cells (PBMCs) were isolated. Tumor-infiltrating lymphocytes (TILs) and autologous gastric cancer cells were isolated from resected gastric cancer tissues. CD4(+) T cells, CD8(+) T cells, and CD4(+) CCR4(-)CCR6(-)CXCR3(-) cells were purified from PBMCs and TILs. Plasma IL-9 level was measured by enzyme linked immunosorbent assay (ELISA). The percentage of CD3(+) CD4(+) IL-9(+) Th9 cells in PBMCs and TILSs was assessed by flow cytometry. The mRNA levels of IL-9 and transcriptional factors purine-rich nucleic acid binding protein 1 (PU.1) were semi-quantified by real-time quantitative polymerase chain reaction (RT-qPCR). PBMCs and TILs from gastric cancer patients were stimulated with recombinant human IL-9. Cellular proliferation was measured by cell counting kit-8. The phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) and STAT6 were investigated by western blot. Cytokine production was measured by ELISA. Purified CD8(+) T cells from TILs of gastric cancer patients were stimulated with recombinant human IL-9. CD8(+) T cells and autologous gastric cancer cells were cocultured in direct contact and indirect contact manner. The percentage of target cell death was calculated by measuring the lactate dehydrogenase (LDH) level. These cretion of γ-Interferon (γ-IFN) and tumor necrosis factor-α (TNF-α) was measured by ELISA. CD4(+) CCR4(-)CCR6(-)CXCR3(-)cells, CD8(+) T cells, and autologous gastric cancer cells were directly cocultured, and anti-IL-9 neutralizing antibody was added. The target cell death was measured. Results: The percentages of CD3(+) CD4(+) IL-9(+) Th9 cells in PBMCs of control group and PBMCs of gastric cancer group were (1.21±0.25)% and (1.14±0.19)%, respectively. The difference was not statistically significant (P=0.280). The percentage of CD3(+) CD4(+) IL-9(+) Th9 cells in TILs of gastric cancer group was (2.30±0.55)%, which was higher than those in PBMCs of control group and PBMCs of gastric cancer group (P<0.001). The plasma IL-9 level in control group and gastric cancer group were (5.04±1.51) and (4.93±1.25) ng/ml. The difference was not statistically significant (P=0.787). The relative levels of IL-9 mRNA in PBMCs of control group and PBMCs of gastric cancer group were 1.33±0.39 and 1.36±0.27. The difference was not statistically significant (P=0.691). The relative level of IL-9 mRNA in TILs of gastric cancer group was 2.90±0.75, which was higher than those in PBMCs of control group (P<0.001) and PBMCs of gastric cancer group (P<0.001). The relative levels of PU.1 mRNA in PBMCs of control group and PBMCs of gastric cancer group were 1.21±0.12 and 1.20±0.11. The difference was not statistically significant (t=0.21, P=0.833). PU.1 mRNA relative level in TILs of gastric cancer group was 2.81±0.65, which was higher than those in PBMCs of control group (P<0.001) and PBMCs of gastric cancer group (P<0.001). Recombinant human IL-9 stimulation did not affect the proliferation of PBMCs and TILs of gastric cancer patients (P>0.05), but elevated the phosphorylation level of STAT6 and induced the secretions of γ-IFN, IL-17, and IL-22 by TILs (P<0.05). In direct contact culture system, IL-9 stimulation promoted tumor-infiltrating CD8(+) T cells-induced autologous gastric cancer cell death [(20.62±2.27)% vs. (16.08±2.61)%, P<0.01)]. In indirect contact culture system, IL-9 stimulation did not increase CD8(+) T cell-induced autologous gastric cancer cell death [(5.21±0.70)% vs. (5.31±1.22)%, P=0.998)]. However, the secretion levels of γ-IFN were elevated in response to IL-9 stimulation in both culture systems [direct contact culture system: (100.40±12.05) pg/ml vs. (76.45±8.56) pg/ml; indirect contact culture system: (78.00±9.98) pg/ml vs. (42.09±10.71) pg/ml; P<0.01]. The TNF-α secretion level did not significantly changed (P>0.05). In direct contact culture system, the percentage of target cells was (22.01±3.05) % and γ-IFN secretion level was (104.5±12.84) pg/ml in CD4(+) CCR4(-)CCR6(-)CXCR3(-) cells+ CD8(+) T cells+ gastric cancer cells group, which was higher than (16.08±2.61)% and (76.45±8.56) pg/ml in CD8(+) T cells+ gastric cancer cells group (P<0.01). However, the percentage of target cells was (14.47±3.14)% and γ-IFN secretion level was (70.45±19.43) pg/ml in CD4(+) CCR4(-)CCR6(-)CXCR3(-) cells+ CD8(+) T cells+ gastric cancer cells+ anti-IL-9 neutralizing antibody group, which were lower than those in CD4(+) CCR4(-)CCR6(-)CXCR3(-) cells+ CD8(+) T cells+ gastric cancer cells group (P<0.01). Conclusion: Tumor-infiltrating Th9 cells and the secreting IL-9 promote the activity of CD8(+) T cells in gastric cancer patients, and enhance anti-tumor immune response.
Humans
;
CD8-Positive T-Lymphocytes
;
Stomach Neoplasms/pathology*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Lymphocytes, Tumor-Infiltrating/pathology*
;
Interferon-gamma/metabolism*
;
RNA, Messenger/metabolism*
;
Antibodies, Neutralizing/metabolism*
6.Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection.
Rongjuan PEI ; Jianqi FENG ; Yecheng ZHANG ; Hao SUN ; Lian LI ; Xuejie YANG ; Jiangping HE ; Shuqi XIAO ; Jin XIONG ; Ying LIN ; Kun WEN ; Hongwei ZHOU ; Jiekai CHEN ; Zhili RONG ; Xinwen CHEN
Protein & Cell 2021;12(9):717-733
The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.
Adenosine Monophosphate/therapeutic use*
;
Alanine/therapeutic use*
;
Alveolar Epithelial Cells/virology*
;
Antibodies, Neutralizing/therapeutic use*
;
COVID-19/virology*
;
Down-Regulation
;
Drug Discovery
;
Human Embryonic Stem Cells/metabolism*
;
Humans
;
Immunity
;
Lipid Metabolism
;
Lung/virology*
;
RNA, Viral/metabolism*
;
SARS-CoV-2/physiology*
;
Virus Replication/drug effects*
7.Efficient Humoral and Cellular Immune Responses Induced by a Chimeric Virus-like Particle Displaying the Epitope of EV71 without Adjuvant.
Pu LIANG ; Yao YI ; Qiu Dong SU ; Feng QIU ; Xue Ting FAN ; Xue Xin LU ; Sheng Li BI
Biomedical and Environmental Sciences 2018;31(5):343-350
OBJECTIVETo eliminate the side effects of aluminum adjuvant and His-tag, we constructed chimeric VLPs displaying the epitope of EV71 (SP70) without His-tagged. Then evaluating whether the VLPs could efficiently evoke not only humoral but also cellular immune responses against EV71 without adjuvant.
METHODSThe fusion protein was constructed by inserting SP70 into the MIR of truncated HBcAg sequence, expressed in E. Coli, and purified through ion exchange chromatography and density gradient centrifugation. Mice were immunized with the VLPs and sera were collected afterwards. The specific antibody titers, IgG subtypes and neutralizing efficacy were detected by ELISA, neutralization assay, and EV71 lethal challenge. IFN-γ and IL-4 secreted by splenocytes were tested by ELISPOT assay.
RESULTSHBc-SP70 proteins can self-assemble into empty VLPs. After immunization with HBc-SP70 VLPs, the detectable anti-EV71 antibodies were effective in neutralizing EV71 and protected newborn mice from EV71 lethal challenge. There was no significant difference for the immune efficacy whether the aluminum adjuvant was added or not. The specific IgG subtypes were mainly IgG1 and IgG2b and splenocytes from the mice immunized produced high levels of IFN-γ and IL-4.
CONCLUSIONThe fusion proteins without His-tagged was expressed and purified as soluble chimeric HBc-SP70 VLPs without renaturation. In the absence of adjuvant, they were efficient to elicit high levels of Th1/Th2 mixed immune response as well as assisted by aluminum adjuvant. Furthermore, the chimeric VLPs have potential to prevent HBV and EV71 infection simultaneously.
Adjuvants, Immunologic ; Animals ; Antibodies, Neutralizing ; Antibodies, Viral ; blood ; Enterovirus A, Human ; genetics ; Enterovirus Infections ; immunology ; virology ; Epitopes ; immunology ; metabolism ; Escherichia coli ; metabolism ; Female ; Immunity, Cellular ; Immunity, Humoral ; Mice ; Recombinant Fusion Proteins ; immunology
8.Adipose Stromal Cells from Visceral and Subcutaneous Fat Facilitate Migration of Ovarian Cancer Cells via IL-6/JAK2/STAT3 Pathway.
Boyun KIM ; Hee Seung KIM ; Soochi KIM ; Guy HAEGEMAN ; Benjamin K TSANG ; Danny N DHANASEKARAN ; Yong Sang SONG
Cancer Research and Treatment 2017;49(2):338-349
PURPOSE: Adipose stromal cells (ASCs) play an important regulatory role in cancer progression and metastasis by regulating systemic inflammation and tissue metabolism. This study examined whether visceral and subcutaneous ASCs (V- and S-ASCs) facilitate the growth and migration of ovarian cancer cells. MATERIALS AND METHODS: CD45– and CD31– double-negative ASCs were isolated from the subcutaneous and visceral fat using magnetic-activated cell sorting. Ovarian cancer cells were cultured in conditioned media (CM) obtained from ASCs to determine the cancer-promoting effects of ASCs. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, Boyden chamber assay, and western blotting were performed to determine the proliferative activity, migration ability, and activation of the JAK2/STAT3 pathway, respectively. RESULTS: CM from ASCs enhanced the migration of the ovarian cancer line, SKOV3, via activation of the JAK2/STAT3 signaling pathway. Interestingly, in response to ASC-CM, the ascites cells derived from an ovarian cancer patient showed an increase in growth and migration. The migration of ovarian cancer cells was suppressed by blocking the activation of JAK2 and STAT3 using a neutralizing antibody against interleukin 6, small molecular inhibitors (e.g., WP1066 and TG101348), and silencing of STAT3 using siRNA. Anatomical differences between S- and V-ASCs did not affect the growth and migration of the ovarian cancer cell line and ascites cells from the ovarian cancer patients. CONCLUSION: ASCs may regulate the progression of ovarian cancer, and possibly provide a potential target for anticancer therapy.
Adipose Tissue
;
Antibodies, Neutralizing
;
Ascites
;
Blotting, Western
;
Cell Line
;
Cell Movement
;
Culture Media, Conditioned
;
Humans
;
Inflammation
;
Interleukin-6
;
Intra-Abdominal Fat
;
Metabolism
;
Neoplasm Metastasis
;
Ovarian Neoplasms*
;
RNA, Small Interfering
;
Stromal Cells*
;
Subcutaneous Fat*
9.JNK in spinal cord facilitates bone cancer pain in rats through modulation of CXCL1.
Zhong-liang WANG ; Ting-ting DU ; Rui-guang ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):88-94
In patients with advanced cancer, cancer-induced bone pain (CIBP) is a severe and common problem that is difficult to manage and explain. As c-Jun N-terminal kinase (JNK) and chemokine (C-X-C motif) ligand 1 (CXCL1) have been shown to participate in several chronic pain processes, we investigated the role of JNK and CXCL1 in CIBP and the relationship between them. A rat bone cancer pain model was established by intramedullary injection of Walker 256 rat gland mammary carcinoma cells into the left tibia of Sprague-Dawley rats. As a result, intramedullary injection of Walker 256 carcinoma cells induced significant bone destruction and persistent pain. Both phosphorylated JNK1 (pJNK1) and pJNK2 showed time-dependent increases in the ipsilateral spinal cord from day 7 to day 18 after tumor injection. Inhibition of JNK activation by intrathecal administration of SP600125, a selective pJNK inhibitor, attenuated mechanical allodynia and heat hyperalgesia caused by tumor inoculation. Tumor cell inoculation also induced robust CXCL1 upregulation in the ipsilateral spinal cord on day 18 after tumor injection. Inhibition of CXCL1 by intrathecal administration of CXCL1 neutralizing antibody showed a stable analgesic effect. Intrathecal administration of SP600125 reduced CXCL1 increase in the spinal cord, whereas inhibition of CXCL1 in the spinal cord showed no influence on JNK activation. Taken together, these results suggested that JNK activation in spinal cord contributed to the maintenance of CIBP, which may act through modulation of CXCL1. Inhibition of the pJNK/CXCL1 pathway may provide a new choice for treatment of CIBP.
Animals
;
Antibodies, Neutralizing
;
immunology
;
therapeutic use
;
Bone Neoplasms
;
complications
;
metabolism
;
Cancer Pain
;
drug therapy
;
etiology
;
metabolism
;
Cell Line, Tumor
;
Chemokine CXCL1
;
immunology
;
metabolism
;
Female
;
JNK Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
metabolism
;
Protein Kinase Inhibitors
;
pharmacology
;
therapeutic use
;
Rats
;
Rats, Sprague-Dawley
;
Spinal Cord
;
metabolism
10.Comparison of Immune Response by Virus Infection and Vaccination to 2009 Pandemic Influenza A/H1N1 in Children.
Eun Kyeong KANG ; Jung Sub LIM ; Jun Ah LEE ; Dong Ho KIM
Journal of Korean Medical Science 2013;28(2):274-279
We aimed to compare the immune response induced by natural infection with 2009 pandemic influenza A/H1N1 (pH1N1) virus and by monovalent pH1N1 vaccination in children and adolescents. This cross-sectional clinical study was conducted at 3 hospitals in Korea from February to May 2010. A total of 266 healthy subjects aged from 6 months to 18 yr were tested for the presence of the antibody against pH1N1 using hemagglutination inhibition (HI) test. Information about pH1N1 vaccination and laboratory-confirmed pH1N1 infection history was obtained. The overall rate of HI titers of > or = 1:40 against pH1N1 was 38.7%, and the geometric mean titer (GMT) was 20.5. Immunogenicity of pH1N1 vaccination only was reflected by a 41.1% of seroprotection rate and a GMT of 22.5. Immunogenicity of natural infection only was reflected by a 61.0% of seroprotection rate and a GMT of 40.0. GMT was significantly higher in the subjects of natural infection group than in the subjects of pH1N1 vaccination group (P < 0.001). The immune responses induced by natural pH1N1 infection exceed those induced by pH1N1 vaccinations.
Adolescent
;
Antibodies, Neutralizing/blood
;
Antibody Formation
;
Child
;
Child, Preschool
;
Cross-Sectional Studies
;
Hemagglutination Inhibition Tests
;
Humans
;
Infant
;
Influenza A Virus, H1N1 Subtype/*immunology/metabolism
;
Influenza, Human/epidemiology/*immunology/prevention & control
;
Pandemics
;
Vaccination

Result Analysis
Print
Save
E-mail