1.Color-component correlation and mechanism of component transformation of processed Citri Reticulatae Semen.
Kui-Lin ZHU ; Jin-Lian ZOU ; Xu-Li DENG ; Mao-Xin DENG ; Hai-Ming WANG ; Rui YIN ; Zhang-Xian CHEN ; Yun-Tao ZHANG ; Hong-Ping HE ; Fa-Wu DONG
China Journal of Chinese Materia Medica 2025;50(9):2382-2390
High-performance liquid chromatography(HPLC) was used to determine the content of three major components in Citri Reticulatae Semen(CRS), including limonin, nomilin, and obacunone. The chromaticity of the CRS sample during salt processing and stir-frying was measured using a color difference meter. Next, the relationship between the color and content of the salt-processed CRS sample was investigated through correlation analysis. By integrating the oil bath technique for processing simulation with HPLC, the changes in the relative content of nomilin and its transformation products were analyzed, with its structural transformation pattern during processing identified. Additionally, RAW264.7 cells were induced with lipopolysaccharides(LPSs) to establish an inflammatory model, and the anti-inflammatory activity of nomilin and its transformation product, namely obacunone was evaluated. The results indicated that as processing progressed, E~*ab and L~* values showed a downward trend; a~* values exhibited a slow increase over a certain period, followed by no significant changes, and b~* values remained stable with no significant changes over a certain period and then started to decrease. The limonin content remained barely unchanged; the nomilin content decreased, and the obacunone increased significantly. The changing trends in content and color parameters during salt-processing and stir-frying were basically consistent. The content of nomilin and obacunone was significantly correlated with the colorimetric values(L~*, a~*, b~*, and E~*ab), while limonin content showed no significant correlation with these values. By analyzing HPLC patterns of nomylin at different heating temperatures and time, it was found that under conditions of 200-250 ℃ for heating of 5-60 min, the content of nomilin significantly decreased, while the obacunone content increased pronouncedly. The in vitro anti-inflammatory activity results indicated that compared to the model group, the group with a high concentration of nomilin and the groups with varying concentrations of obacunone showed significantly reduced release of nitric oxide(NO)(P<0.01). When both were at the same concentration, obacunone showed better performance in inhibiting NO release. In this study, the obvious correlation between the color and content of major components during the processing of CRS samples was identified, and the dynamic patterns of quality change in CRS samples during processing were revealed. Additionally, the study revealed and confirmed the transformation of nomilin into obacunone during processing, with the in vitro anti-inflammatory activity of obacunone significantly greater than that of nomilin. These findings provided a scientific basis for CRS processing optimization, tablet quality control, and its clinical application.
Mice
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
RAW 264.7 Cells
;
Limonins/chemistry*
;
Chromatography, High Pressure Liquid
;
Citrus/chemistry*
;
Color
;
Benzoxepins/chemistry*
;
Anti-Inflammatory Agents/chemistry*
2.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
3.Research progress in pharmacological activities and pharmacokinetics of geniposidic acid.
Zi-Wei LI ; Sheng-Lan QI ; Qing-Guang ZHANG ; Ling CHEN ; Jing HU ; Guang-Bo GE ; Feng HUANG
China Journal of Chinese Materia Medica 2025;50(13):3679-3691
Geniposidic acid(GA), a natural iridoid, exists in the roots, stems, leaves, flowers, bark, fruits, and seeds of medicinal plants of Rubiaceae, Eucommiaceae, and Plantaginaceae. Modern pharmacological studies have revealed that GA has multiple pharmacological activities, including organ-protective, anti-inflammatory, antioxidative, anti-osteoporosis, anti-neurodegenerative, and anti-cardiovascular effects. GA can enhance cell/organism defenses by upregulating key anti-inflammatory and antioxidant cytokines, while downregulating key node proteins in pro-inflammatory signaling pathways such as AhR and TLR4/MyD88, thereby exerting pharmacological effects such as organ protection. Pharmacokinetic investigations have suggested that after oral administration, GA can be distributed in multiple organs(kidney, liver, heart, spleen, lung, etc.). In addition, the pharmacokinetic behavior of GA could be significantly altered under disease conditions, as demonstrated by a marked increase in systematic exposure. This article comprehensively summarizes the reported pharmacological activities and mechanisms and systematically analyzes the pharmacokinetic characteristics and key parameters of GA, with the aim of providing a theoretical basis and scientific reference for the precise clinical application of GA-related Chinese patent medicines, as well as for the investigation and development of innovative drugs based on GA.
Humans
;
Drugs, Chinese Herbal/chemistry*
;
Animals
;
Iridoid Glucosides/chemistry*
;
Plants, Medicinal/chemistry*
;
Anti-Inflammatory Agents/pharmacology*
4.Mechanism of 4-methylcatechol in inhibiting fibroblast-like synoviocyte migration and suppressing inflammatory responses in treatment of rheumatoid arthritis.
Zhendong YING ; Peng WANG ; Lei ZHANG ; Dailing CHEN ; Qiuru WANG ; Qibin LIU ; Tiantian TANG ; Changjun CHEN ; Qingwei MA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(8):1051-1060
OBJECTIVE:
To investigate the effects of 4-methylcatechol (4MC) on the migration and inflammatory response in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), as well as its underlying mechanisms of action.
METHODS:
RA-FLS was isolated from synovial tissue donated by RA patients, and the optimal concentration of 4MC was determined by cell counting kit 8 method for subsequent experiments, and the effect of 4MC on the migratory ability of RA-FLS was evaluated via a cell scratch assay. An inflammation model of RA-FLS was induced by tumor necrosis factor α (TNF-α). Real-time fluorescence quantitative PCR and ELISA were employed to detect the gene and protein expression levels of interleukin-1β (IL-1β) and IL-6 in RA-FLS and their culture supernatants, respectively, thereby investigating the anti-inflammatory effects of 4MC. Western blot was used to examine the expressions of nuclear factor κB (NF-κB) signaling pathway-related proteins, including inhibitor of NF-κB-α (IKBα), phosphorylated (P)-IκBα, NF-κB-inducing kinase α (IKKα), P-IKKαβ, P-p65, and p65. Cellular immunofluorescence was utilized to detect the expression and localization of p65 in RA-FLS, exploring whether 4MC exerts its anti-inflammatory effects by regulating the NF-κB signaling pathway. Finally, a collagen-induced arthritis (CIA) mouse model was established. The anti-RA effect of 4MC in vivo was evaluated by gross observation and histological examination.
RESULTS:
4MC inhibited RA-FLS migration in a concentration-dependent manner. In the TNF-α-induced RA-FLS inflammation model, 4MC significantly decreased the gene and protein expression levels of IL-1β and IL-6. Furthermore, 4MC markedly reduced the ratios of P-IΚBα/IΚBα, P-IKKαβ/IKKα, and P-p65/p65, thereby blocking the transcriptional activity of p65 by inhibiting its nuclear translocation. This mechanism effectively suppressed the activation of the TNF-α-mediated NF-κB signaling pathway. Animal studies demonstrated that 4MC [10 mg/(kg·day)] significantly lowered serum levels of IL-1β, IL-6, and TNF-α, and alleviated arthritis severity and bone destruction in CIA mice.
CONCLUSION
4MC not only inhibits the migration of RA-FLS but also mitigates their inflammatory response by suppressing the NF-κB signaling pathway, thereby effectively exerting its anti-RA effects.
Synoviocytes/metabolism*
;
Arthritis, Rheumatoid/metabolism*
;
Animals
;
Cell Movement/drug effects*
;
Humans
;
Catechols/therapeutic use*
;
Fibroblasts/drug effects*
;
Mice
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Transcription Factor RelA/metabolism*
;
Synovial Membrane/cytology*
;
Cells, Cultured
;
Male
;
Arthritis, Experimental
;
Anti-Inflammatory Agents/pharmacology*
;
NF-KappaB Inhibitor alpha
;
Inflammation
5.Therapeutic effects of natural products on animal models of chronic obstructive pulmonary disease.
Xinru FEI ; Guixian YANG ; Junnan LIU ; Tong LIU ; Wei GAO ; Dongkai ZHAO
Journal of Central South University(Medical Sciences) 2025;50(6):1067-1079
Chronic obstructive pulmonary disease (COPD) currently lacks effective treatments to halt disease progression, making the search for preventive and therapeutic drugs a pressing issue. Natural products, with their accessibility, affordability, and low toxicity, offer promising avenues. Investigating the pharmacological effects and related signaling mechanisms of active components from natural products on COPD animal models induced by various triggers has become an important focus. In animal models induced by cigarette smoke, cigarette smoke combined with lipopolysaccharide (LPS), air pollution, elastase, bacterial or viral infections, the active compounds of natural products, such as flavonoids, terpenoids, and phenolics, can exert anti-inflammatory, antioxidant, mucus-regulating, and airway remodeling-inhibiting effects through key signaling pathways including nuclear factor-erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinase (MAPK). These findings not only provide a theoretical basis for the clinical diagnosis and treatment of COPD but also point to new directions for future scientific research.
Pulmonary Disease, Chronic Obstructive/etiology*
;
Animals
;
Disease Models, Animal
;
Biological Products/pharmacology*
;
Humans
;
NF-kappa B/metabolism*
;
Flavonoids/pharmacology*
;
Signal Transduction/drug effects*
;
Anti-Inflammatory Agents/pharmacology*
;
Heme Oxygenase-1/metabolism*
;
Terpenes/pharmacology*
;
Antioxidants/pharmacology*
;
NF-E2-Related Factor 2/metabolism*
;
Smoke/adverse effects*
;
Phenols/therapeutic use*
6.Applications of bioactive peptides in cosmeceuticals: a review.
Journal of Zhejiang University. Science. B 2025;26(6):527-545
The cosmetic sector is a multibillion-dollar industry that requires constant attention being paid to innovative product development and engagement. Notably, its market value is projected to exceed 750 billion U.S. dollars by 2025, and it is expanding as novel, climate-friendly, green, and sustainable components from natural sources are incorporated. This review is written based on the numerous reports on the potential applications of food-derived peptides while focusing on their possible uses in the formulation of cosmeceutical and skincare products. First, the production methods of bioactive peptides linked to cosmeceutical uses are described. Then, we discuss the obtainment and characterization of different anti-inflammatory, antimicrobial, antioxidant, anti-aging, and other pleiotropic peptides with their specific mechanisms, from various food sources. The review concludes with salient considerations of the cost of production and pilot scale operation, stability, compatibility, user safety, site-specificity, and delivery methods, when designing or developing biopeptide-based cosmeceutical products.
Cosmeceuticals/chemistry*
;
Peptides/pharmacology*
;
Humans
;
Antioxidants/pharmacology*
;
Anti-Inflammatory Agents/pharmacology*
;
Anti-Infective Agents/pharmacology*
;
Cosmetics
;
Skin Aging/drug effects*
7.Comparison of anti-inflammatory, antibacterial and analgesic activities of formulated granules versus traditional decoction of Yinqiao Powder.
Zhuolin GUO ; Zhiheng ZHANG ; Xindeng GUO ; Weiwei YANG ; Zhiqing LIANG ; Jinying OU ; Huihui CAO ; Zibin LU ; Linzhong YU ; Junshan LIU
Journal of Southern Medical University 2025;45(5):1003-1012
OBJECTIVES:
To compare the anti-inflammatory, antibacterial and analgesic effects of Yinqiao Powder (YQS) formulated granules and decoction.
METHODS:
We first evaluated the anti-inflammatory effects of the two dosage forms of YQS in a LPS-induced RAW 264.7 cell model using RT-qPCR and Western blotting. We further constructed zebrafish models of inflammation by copper sulfate exposure, caudal fin transection, or LPS and Poly (I:C) microinjection, and evaluated anti-inflammatory effects of YQS granules and decoction by examining neutrophil aggregation and HE staining findings. In a mouse model of acute lung injury (ALI) induced by intratracheal LPS instillation, the effects of YQS gavage at 10, 15, and 20 g/kg on lung pathologies were evaluated by calculating lung wet-dry weight ratio and using HE staining, ELISA and Western blotting. The microbroth dilution method was used to evaluate the antibacterial effect of YQS. Mouse pain models established by hot plate and intraperitoneal injection of glacial acetic acid were used to evaluate the analgesic effects of YQS at 10, 15, and 20 g/kg.
RESULTS:
Both YQS granules and decoction significantly reduced TNF-α, IL-6, and IL-1β expressions and p-STAT3 (Tyr 705) phosphorylation level in LPS-induced RAW 264.7 cells, and obviously inhibited neutrophil aggregation in the zebrafish models. In ALI mice, YQS granules and decoction effectively ameliorated lung injury, lowered lung wet-dry weight ratio, and reduced p-STAT3 (Tyr 705) expression and TNF-α and IL-6 levels. YQS produced obvious antibacterial effect at the doses of 15.63 and 31.25 mg/mL, and significantly reduced body torsion and increased pain threshold in the mouse pain models.
CONCLUSIONS
The two dosage forms of TQS have similar anti-inflammatory, antibacterial and analgesic effects with only differences in their inhibitory effect on TNF-α, IL-6 and IL-1β mRNA expressions in LPS-induced RAW 264.7 cells.
Animals
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Anti-Inflammatory Agents/pharmacology*
;
Analgesics/pharmacology*
;
RAW 264.7 Cells
;
Zebrafish
;
Anti-Bacterial Agents/pharmacology*
;
Powders
;
Tumor Necrosis Factor-alpha/metabolism*
;
Acute Lung Injury/drug therapy*
;
Interleukin-6/metabolism*
;
Lipopolysaccharides
8.Total alkaloids from Thesium chinense inhibit lipopolysaccharide-induced respiratory inflammation by modulating Nrf2/NF-κB/NLRP3 signaling pathway.
Guohui LI ; Yueqin GUAN ; Lintao XU ; Guangcheng PENG ; Qingtong HAN ; Tian WANG ; Zhenpeng XU ; Xuesen WEN ; Hongxiang LOU ; Tao SHEN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):421-430
Inflammation plays a pivotal role in the etiology and progression of various diseases. In traditional Chinese medicine, the whole plants of Thesium chinense Turcz. and its preparations (e.g. Bairui Granules) have been employed to manage inflammatory conditions. While flavonoids were previously considered the primary anti-inflammatory components, other potentially active constituents have been largely overlooked and not thoroughly investigated. This study presents a novel finding that the total alkaloids of T. chinense (BC-Alk) are potent active substances underlying the traditional and clinical applications of T. chinense and Bairui Granules as anti-inflammatory agents. UPLC-MS/MS analysis identified the composition of BC-Alk as quinolizidine alkaloids. The anti-inflammatory efficacy of BC-Alk was evaluated using a lipopolysaccharide (LPS)-induced lung inflammation model in mice. Results demonstrated that BC-Alk significantly mitigated LPS-induced lung inflammation, attenuated the overproduction of IL-1β and the overproduction of inflammatory factors (TNF-α), and ameliorated lung tissue hyperplasia in mice in vivo. Mechanistic studies in vitro revealed that BC-Alk upregulated the expression of Nrf2 and its downstream proteins NQO1 and glutamate-cystine ligase and modifier subunit (GCLM), inhibited NF-κB phosphorylation, and suppressed NLRP3 activation. Collectively, these findings indicate that BC-Alk exerts potent inhibitory effects against lung inflammation by modulating Nrf2, NF-κB, and NLRP3 pathways. This study provides new insights into the anti-inflammatory constituents of T. chinense and Bairui Granules.
Animals
;
Lipopolysaccharides/adverse effects*
;
Alkaloids/pharmacology*
;
NF-kappa B/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Mice
;
Signal Transduction/drug effects*
;
Anti-Inflammatory Agents/pharmacology*
;
Male
;
Mice, Inbred C57BL
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Pneumonia/genetics*
9.Anti-cancer and anti-inflammatory effects of flavan-4-ol and flavan glycosides from the roots of Pronephrium penangianum.
Feibing HUANG ; Yong YANG ; Qingling XIE ; Hanwen YUAN ; Muhammad AAMER ; Yuqing JIAN ; Ye ZHANG ; Wei WANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):593-603
Five new flavan-4-ol glycosides jixueqiosides A-E (1-5) and two new flavan glycosides jixueqiosides F and G (6 and 7), along with twelve known flavan-4-ol glycosides (8-19), were isolated from the roots of Pronephrium penangianum. Comprehensive spectral analyses, X-ray single-crystal diffraction, and theoretical electronic circular dichroism (ECD) calculations established structures and absolute configurations. A single crystal structure of flavan-4-ol glycoside (14) was reported for the first time, while the characteristic ECD and NMR data for all isolated flavan-4-ol glycosides (1-5 , 8-19) were analyzed, establishing a set of empirical rules. Activity screening of these isolates showed that 8 and 9 could inhibit the proliferation of MDA-MB-231 and MCF-7 cells with IC50 values of 7.93 ? 2.85 ?mol?L-1 and 5.87 ? 1.58 ?mol?L-1 (MDA-MB-231), and 2.21 ? 1.38 ?mol?L-1 and 3.52 ? 1.55 ?mol?L-1 (MCF-7), respectively. Western blotting and flow cytometry analyses demonstrated that 8 and 9 dose-dependently induced apoptosis in MDA-MB-231 cells by up-regulating BAX, activating caspase-3 and down-regulating BCL-2. Additionally, compound 8 affected autophagy-related proteins, increasing the ratio of LC3-II/LC3-I and Beclin-1 levels to inhibit MDA-MB-231 cell proliferation. Moreover, anti-inflammatory studies indicated that 2, 3, 7, 13, 14, and 18 moderately inhibited tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and nitric oxide (NO) release.
Humans
;
Plant Roots/chemistry*
;
Glycosides/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Flavonoids/isolation & purification*
;
Cell Proliferation/drug effects*
;
Antineoplastic Agents, Phytogenic/isolation & purification*
;
Molecular Structure
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Tumor Necrosis Factor-alpha/immunology*
;
Drugs, Chinese Herbal/pharmacology*
;
Interleukin-6/immunology*
;
Animals
;
Mice
10.Lirispirolides A-L, a new class of sesquiterpene-monoterpene heterodimers with anti-neuroinflammatory activity from the rare medicinal plant Liriodendron chinense.
Yuhang HE ; Kexin LI ; Yufei WU ; Zexin JIN ; Jinfeng HU ; Yicheng MAO ; Juan XIONG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):938-950
Lirispirolides A-L (1-12), twelve novel sesquiterpene-monoterpene heterodimers featuring distinctive carbon skeletons, were isolated from the branches and leaves of Chinese tulip tree [Liriodendron chinense (L. chinense)], a rare medicinal and ornamental plant endemic to China. The structural elucidation was accomplished through comprehensive spectroscopic analyses, quantum-chemical calculations, and X-ray crystallography. These heterodimers exhibit a characteristic 2-oxaspiro[4.5]decan-1-one structural motif, biosynthetically formed through intermolecular [4 + 2]-cycloaddition between a germacrane-type sesquiterpene and an ocimene-type monoterpene. The majority of the isolated compounds demonstrated significant anti-neuroinflammatory effects in lipopolysaccharide (LPS)-induced BV-2 microglial cells by reducing the production of pro-inflammatory mediators, specifically tumor necrosis factor-α (TNF-α) and nitric oxide (NO). Further investigation revealed that the lirispirolides' inhibition of NO release correlated with decreased messenger ribonucleic acid (mRNA) expression of inducible NO synthase (iNOS).
Sesquiterpenes/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Animals
;
Mice
;
Tumor Necrosis Factor-alpha/genetics*
;
Nitric Oxide/immunology*
;
Microglia/immunology*
;
Molecular Structure
;
Liriodendron/chemistry*
;
Monoterpenes/isolation & purification*
;
Plants, Medicinal/chemistry*
;
Cell Line
;
Lipopolysaccharides
;
Nitric Oxide Synthase Type II/immunology*
;
Plant Extracts/pharmacology*
;
China

Result Analysis
Print
Save
E-mail