1.A review of structural modification and biological activities of oleanolic acid.
Huali YANG ; Minghui DENG ; Hongwei JIA ; Kaicheng ZHANG ; Yang LIU ; Maosheng CHENG ; Wei XIAO
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):15-30
Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits a broad spectrum of biological activities, including antitumor, antiviral, antibacterial, anti-inflammatory, hepatoprotective, hypoglycemic, and hypolipidemic effects. Since its initial isolation and identification, numerous studies have reported on the structural modifications and pharmacological activities of OA and its derivatives. Despite this, there has been a dearth of comprehensive reviews in the past two decades, leading to challenges in subsequent research on OA. Based on the main biological activities of OA, this paper comprehensively summarized the modification strategies and structure-activity relationships (SARs) of OA and its derivatives to provide valuable reference for future investigations into OA.
Oleanolic Acid
;
Structure-Activity Relationship
;
Anti-Inflammatory Agents/pharmacology*
;
Triterpenes
;
Anti-Bacterial Agents/pharmacology*
2.Effect of naringenin on the anti-inflammatory, vascularization, and osteogenesis differentiation of human periodontal ligament stem cells via the stromal cell-derived factor 1/C-X-C motif chemokine receptor 4 signaling axis stimulated by lipopolysaccharide.
Shenghong LI ; Shiyuan PENG ; Xiaoling LUO ; Yipei WANG ; Xiaomei XU
West China Journal of Stomatology 2023;41(2):175-184
OBJECTIVES:
This study aimed to investigate how naringenin (Nar) affected the anti-inflammatory, vascula-rization, and osteogenesis differentiation of human periodontal ligament stem cells (hPDLSCs) stimulated by lipopolysaccharide (LPS) and to preliminarily explore the underlying mechanism.
METHODS:
Cell-counting kit-8 (CCK8), cell scratch test, and Transwell assay were used to investigate the proliferation and migratory capabilities of hPDLSCs. Alkaline phosphatase (ALP) staining, alizarin red staining, lumen-formation assay, enzyme-linked immunosorbent assay, quantitative timed polymerase chain reaction, and Western blot were used to measure the expression of osteopontin (OPN), Runt-related transcription factor 2 (RUNX2), vascular endothlial growth factor (VEGF), basic fibroblast growth factor (bFGF), von Willebrand factor (vWF), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6.
RESULTS:
We observed that 10 μmol/L Nar could attenuate the inflammatory response of hPDLSCs stimulated by 10 μg/mL LPS and promoted their proliferation, migration, and vascularization differentiation. Furthermore, 0.1 μmol/L Nar could effectively restore the osteogenic differentiation of inflammatory hPDLSCs. The effects of Nar's anti-inflammatory and promotion of osteogenic differentiation significantly decreased and inflammatory vascularization differentiation increased after adding AMD3100 (a specific CXCR4 inhibitor).
CONCLUSIONS
Nar demonstrated the ability to promote the anti-inflammatory, vascularization, and osteogenic effects of hPDLSCs stimulated by LPS, and the ability was associated with the stromal cell-derived factor/C-X-C motif chemokine receptor 4 signaling axis.
Humans
;
Anti-Inflammatory Agents/pharmacology*
;
Cell Differentiation
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12
;
Lipopolysaccharides/pharmacology*
;
Osteogenesis
;
Periodontal Ligament/metabolism*
;
Receptors, Chemokine/metabolism*
;
Stem Cells
;
Interleukin-8/metabolism*
3.Anti-inflammatory material basis and mechanism of Artemisia stolonifera based on UPLC-Q-TOF-MS combined with network pharmacology and molecular docking.
Le CHEN ; Yun-Yun ZHU ; Li-Ping KANG ; Chao-Wei GUO ; Yu-Qiao WANG ; Shuang-Ge LI ; Hong-Zhi DU ; Da-Hui LIU
China Journal of Chinese Materia Medica 2023;48(14):3701-3714
This study aimed to explore the anti-inflammatory material basis and molecular mechanism of Artemisia stolonifera based on the analysis of the chemical components in different extracted fractions of A. stolonifera and their antioxidant and anti-inflammatory effects in combination with network pharmacology and molecular docking. Thirty-two chemical components were identified from A. stolonifera by ultra-performance liquid chromatography coupled to tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Among them, there were 7, 21 and 22 compounds in water, n-butanol and ethyl acetate fractions, respectively. The antio-xidant capacity of different extracted fractions was evaluated by measuring their scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) free radicals and total antioxidant capacity [ferric reducing antioxidant power(FRAP) assay]. The inflammatory model of RAW264.7 cells was induced by lipopolysaccharide(LPS), and the levels of nitrite oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) in the supernatant and the mRNA expression of related inflammatory factors in cells were used to evaluate the anti-inflammatory effects. The results revealed that ethyl acetate fraction of A. stolonifera was the optimal antioxidant and anti-inflammatory fraction. By network pharmacology, it was found that flavonoids such as rhamnazin, eupatilin, jaceosidin, luteolin and nepetin could act on key targets such as TNF, serine/threonine protein kinase 1(AKT1), tumor protein p53(TP53), caspase-3(CASP3) and epidermal growth factor receptor(EGFR), and regulate the phosphatidylinositol-3-kinase-protein kinase B(PI3K-AKT) and mitogen-activated protein kinase(MAPK) signaling pathways to exert the anti-inflammatory effects. Molecular docking further indicated excellent binding properties between the above core components and core targets. This study preliminarily clarified the anti-inflammatory material basis and mechanism of ethyl acetate fraction of A. stolonifera, providing a basis for the follow-up clinical application of A. stolonifera and drug development.
Antioxidants/chemistry*
;
Molecular Docking Simulation
;
Artemisia
;
Network Pharmacology
;
Phosphatidylinositol 3-Kinases
;
Anti-Inflammatory Agents/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Interleukin-6
4.Research progress on the preparation and application of flavonoid nanocrystals.
Yiting TIAN ; Zhiqun SHI ; Huiping MA
Journal of Zhejiang University. Medical sciences 2023;52(3):338-348
Flavonoids have been reported to possess significant pharmacological activities,such as antioxidant, anti-inflammatory and anticancer effects. However, the low solubility and low bioavailability limits their clinical application. Nanocrystal technology can solve the delivery problems of flavonoids by reducing particle size, increasing the solubility of insoluble drugs and improving their bioavailability. This article summaries nanosuspension preparation methods and the stabilizers for flavonoid nanocrystals, and reviews the drug delivery routes including oral, Injection and transdermal of flavonoid nanocrystals, to provide information for further research on nanocrystal delivery system of flavonoids.
Flavonoids/pharmacology*
;
Pharmaceutical Preparations/chemistry*
;
Biological Availability
;
Nanoparticles/chemistry*
;
Anti-Inflammatory Agents
;
Particle Size
5.Tea tree oil, a vibrant source of neuroprotection via neuroinflammation inhibition: a critical insight into repurposing Melaleuca alternifolia by unfolding its characteristics.
Md Atiar RAHMAN ; Abida SULTANA ; Mohammad Forhad KHAN ; Rachasak BOONHOK ; Sharmin AFROZ
Journal of Zhejiang University. Science. B 2023;24(7):554-573
Over the past few decades, complementary and alternative treatments have become increasingly popular worldwide. The purported therapeutic characteristics of natural products have come under increased scrutiny both in vitro and in vivo as part of efforts to legitimize their usage. One such product is tea tree oil (TTO), a volatile essential oil primarily obtained from the native Australian plant, Melaleuca alternifolia, which has diverse traditional and industrial applications such as topical preparations for the treatment of skin infections. Its anti-inflammatory-linked immunomodulatory actions have also been reported. This systematic review focuses on the anti-inflammatory effects of TTO and its main components that have shown strong immunomodulatory potential. An extensive literature search was performed electronically for data curation on worldwide accepted scientific databases, such as Web of Science, Google Scholar, PubMed, ScienceDirect, Scopus, and esteemed publishers such as Elsevier, Springer, Frontiers, and Taylor & Francis. Considering that the majority of pharmacological studies were conducted on crude oils only, the extracted data were critically analyzed to gain further insight into the prospects of TTO being used as a neuroprotective agent by drug formulation or dietary supplement. In addition, the active constituents contributing to the activity of TTO have not been well justified, and the core mechanisms need to be unveiled especially for anti-inflammatory and immunomodulatory effects leading to neuroprotection. Therefore, this review attempts to correlate the anti-inflammatory and immunomodulatory activity of TTO with its neuroprotective mechanisms.
Tea Tree Oil/therapeutic use*
;
Melaleuca
;
Neuroprotection
;
Drug Repositioning
;
Neuroinflammatory Diseases
;
Australia
;
Oils, Volatile
;
Anti-Inflammatory Agents/pharmacology*
6.UPLC-Q-TOF-MS/MS combined with network pharmacology for exploring antiinflammatory mechanism of Eurycoma longifolia.
Fang LIU ; Yuanfang ZHANG ; Peng LIU ; Jiamin LIU ; Siyu LIU ; Junjie WANG
Journal of Southern Medical University 2023;43(6):879-888
OBJECTIVE:
To explore the mechanisms that mediate the anti-inflammatory activity of Eurycoma longifolia.
METHODS:
Kunming mouse models of xylene-induced ear swelling and lipopolysaccharide (LPS)-induced acute pneumonia were used to compare the anti- inflammatory activities of aqueous and ethanol extracts of Eurycoma longifolia. UPLC-Q-TOF-MS/MS was used to identify the chemical composition in the ethanol extract of Eurycoma longifolia, based on which the potential antiinflammatory targets of Eurycoma longifolia were screened using the databases including SwissADME, SwissTargetPrediction, and Genecards. The String database was used to generate the protein-protein interaction (PPI) network, and Cytoscape was used for network topology analysis and screening the core targets. The enrichment of the core targets was analyzed using Metascape database, the core components and targets were docked with Autodock software, and the docking results were visualized using Pymol software. In a RAW264.7 cell model of LPS-induced inflammation, the Griess reagent was used to measure NO level, and Western blotting was performed to detect the expression levels of MAPK1, JAK2, and STAT3 proteins to verify the anti- inflammatory mechanism of Eurycoma longifolia.
RESULTS:
The ethanol extract (75%) of Eurycoma longifolia (ELE) was the active site, which contained a total of 37 chemical components. These chemical compounds and diseases had 541 targets, involving the JAK/STAT3, cAMP and other signaling pathways. Twelve indicator components were identified, which all showed good results of molecular docking with two core targets involved in the signaling pathways. In the cell validation experiment, treatment of the cells with low-, medium-, and high-dose ELE significantly reduced NO release in the cells, and ELE at the medium dose significantly decreased the cellular expressions of JAK2 and STAT3.
CONCLUSION
The anti-inflammatory activity of Eurycoma longifolia is attributed primarily to its active ingredients bitter lignin and alkaloids, which may regulate the JAK/STAT3 signaling pathway by targeting JAK2 and STAT3.
Animals
;
Mice
;
Network Pharmacology
;
Eurycoma
;
Lipopolysaccharides
;
Molecular Docking Simulation
;
Tandem Mass Spectrometry
;
Anti-Inflammatory Agents/pharmacology*
;
Ethanol
;
Plant Extracts/pharmacology*
7.10,11-Dehydrocurvularin attenuates inflammation by suppressing NLRP3 inflammasome activation.
Qun ZHAO ; Mengyuan FENG ; Shu JIN ; Xiaobo LIU ; Shengbao LI ; Jian GUO ; Xinran CHENG ; Guangbiao ZHOU ; Xianjun YU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(3):163-171
10,11-Dehydrocurvularin (DCV) is a natural-product macrolide that has been shown to exert anti-inflammatory activity. However, the underlying mechanism of its anti-inflammatory activity remains poorly understood. Aberrant activation of the NLRP3 inflammasome is involved in diverse inflammation-related diseases, which should be controlled. The results showed that DCV specifically inhibited the activation of the NLRP3 inflammasome in association with reduced IL-1β secretion and caspase-1 activation, without effect on the NLRC4 and AIM2 inflammasomes. Furthermore, DCV disturbed the interaction between NEK7 and NLRP3, resulting in the inhibition of NLRP3 inflammasome activation. The C=C double bond of DCV was required for the NLRP3 inflammasome inhibition induced by DCV. Importantly, DCV ameliorated inflammation in vivo through inhibiting the NLRP3 inflammasome. Taken together, our study reveals a novel mechanism by which DCV suppresses inflammation, which indicates the potential role of DCV in NLRP3 inflammasome-driven inflammatory disorders.
Animals
;
Mice
;
Inflammasomes
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Inflammation/drug therapy*
;
Anti-Inflammatory Agents/pharmacology*
;
Interleukin-1beta/genetics*
;
Mice, Inbred C57BL
8.Anti-inflammatory sesquiterpene polyol esters from the stem and branch of Tripterygium wilfordii.
Yalin HU ; Tianqi XU ; Wenjing YIN ; Huaiyu CHENG ; Xia ZHANG ; Ying LIU ; Yubo ZHANG ; Guangxiong ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2023;21(3):233-240
The stem and branch extract of Tripterygium wilfordii (Celastraceae) afforded seven new dihydroagarofuran sesquiterpene polyesters [tripterysines A-G (1-7)] and eight known ones (8-15). The chemical structures of these new compounds were established based on combinational analysis of HR-ESI-MS and NMR techniques. The absolute configurations of tripterysines A-C (1-3) and E-G (5-7) were determined by X-ray crystallographic analysis and circular dichroism spectra. All the compounds were screened for their inhibitory effect on inflammation through determining their inhibitory effect on nitric oxide production in LPS-induced RAW 264.7 cells and the secretion of inflammatory cytokines TNF-α and IL-6 in LPS-induced BV2 macrophages. Compound 9 exhibited significant inhibitory activity on NO production with an IC50 value of 8.77 μmol·L-1. Moreover, compound 7 showed the strongest inhibitory effect with the secretion of IL-6 at 27.36%.
Tripterygium/chemistry*
;
Esters/pharmacology*
;
Interleukin-6
;
Lipopolysaccharides/pharmacology*
;
Plant Leaves/chemistry*
;
Anti-Inflammatory Agents/chemistry*
;
Nitric Oxide/analysis*
;
Sesquiterpenes/chemistry*
;
Molecular Structure
9.Chemical constituents in Dolomiaea plants and their pharmacological activities: a review.
Yan-Hui LYU ; Wei CHEN ; Yan-Ping WEI ; Xin-Tong WEI ; Jie WANG ; Qian-Qian DING ; Zhan-Hong LI ; Ji-Xiang HE ; Xian-Peng ZU
China Journal of Chinese Materia Medica 2023;48(6):1463-1482
Dolomiaea plants are perennial herbs in the Asteraceae family with a long medicinal history. They are rich in chemical constituents, mainly including sesquiterpenes, phenylpropanoids, triterpenes, and steroids. The extracts and chemical constituents of Dolomiaea plants have various pharmacological effects, such as anti-inflammatory, antibacterial, antitumor, anti-gastric ulcer, hepatoprotective and choleretic effects. However, there are few reports on Dolomiaea plants. This study systematically reviewed the research progress on the chemical constituents and pharmacological effects of Dolomiaea plants to provide references for the further development and research of Dolomiaea plants.
Plant Extracts/pharmacology*
;
Asteraceae
;
Triterpenes
;
Sesquiterpenes/pharmacology*
;
Anti-Inflammatory Agents
;
Phytochemicals/pharmacology*
10.Three new cucurbitane-type triterpenoid glycosides from Citrullus colocynthis and their anti-inflammatory activity.
Jun-Ling WU ; Yu-Shuang LIU ; Xi ZHAO ; Tao YUAN
China Journal of Chinese Materia Medica 2023;48(15):4124-4129
Three new cucurbitane-type triterpenoid glycosides were separated from the ethyl acetate extract of Citrullus colocynthis by a variety of chromatographic techniques. According to the data of NMR, HR-ESI-MS, and/or comparison with the reported data, the three novel cucurbitane-type triterpenoid glycosides were identified as colocynthenin E(1), colocynthenin G(2), and colocynthenin H(3). The cell inflammation model was established with RAW264.7 macrophages exposed to lipopolysaccharide and then used to determine the anti-inflammatory activities of the three compounds. Compounds 2 and 3 showed mild anti-inflammatory activities with the IC_(50) of 48.21 and 40.11 μmol·L~(-1), respectively, compared with that(IC_(50)=7.57 μmol·L~(-1)) of the positive control dexamethasone.
Citrullus colocynthis/chemistry*
;
Triterpenes/chemistry*
;
Glycosides/chemistry*
;
Plant Extracts/chemistry*
;
Anti-Inflammatory Agents/pharmacology*

Result Analysis
Print
Save
E-mail