1.Exploration of cross-cultivar group characteristics of a new cultivar of Prunus mume 'Zhizhang Guhong Chongcui'.
Xiaotian QIN ; Mengge GUO ; Shaohua QIN ; Ruidan CHEN
Chinese Journal of Biotechnology 2024;40(1):239-251
'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.
Animals
;
Anthocyanins
;
DNA Shuffling
;
Flowers/genetics*
;
Porifera
;
Prunus/genetics*
;
Glutamine/analogs & derivatives*
;
Plant Extracts
2.Qualitative and quantitative study of flavonoids in Notoginseng Radix et Rhizoma based on UPLC-Q-TOF-MS and HPLC-DAD.
Jie YANG ; Yan-Lin WANG ; Di YANG ; Xue DI ; Xin-Tong HAN ; Si-Yu LI ; Fu-Gang WEI ; Tian-Min WANG
China Journal of Chinese Materia Medica 2023;48(13):3462-3471
The flavonoids in Panax notoginseng were qualitatively analyzed by ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry(UPLC-Q-TOF-MS), and the content of three main flavonoids in P. notoginseng of different specifications and grades collected from different habitats was determined by HPLC-DAD. Flavonoids and anthocyanins were analyzed by UPLC-Q-TOF-MS/MS in the positive and negative ion modes, respectively. Twelve flavonoid glycosides and one anthocyanin glycoside in P. notoginseng were identified, but no flavonoid aglycones were detected. Among them, 12 compounds were identified in the underground part of P. notoginseng for the first time and eight compounds were first reported in this plant. Moreover, six and four compounds were identified in the Panax genus and the Araliaceae family for the first time, respectively. A method for simultaneous determination of three flavonoids in P. notoginseng was established by HPLC-DAD. The content of flavonoids in 721 P. notoginseng samples of 124 specifications and grades collected from 20 different habitats was simultaneously determined. Among three flavonoids determined, the content of quercetin-3-O-(2″-β-D-xylosyl)-β-D-galactoside was the highest with the average content in the tested samples of 161.0 μg·g~(-1). The content of compounds quercetin-3-O-hexosyl-hexoside and kaempferol-3-O-pentosyl-hexoside was relatively low, with the average content of 18.5 μg·g~(-1)(calculated as quercetin-3-O-sophoroside) and 49.4 μg·g~(-1)(calculated as kaempferol-3-O-sangbu diglycoside). There were significant differences in flavonoids content of samples from different production area. The content of flavonoids in spring P. notoginseng was significantly lower than that in winter P. notoginseng when the other influencing factors such as production areas, germplasm resources, and cultivation conditions were fixed. As for P. notoginseng of different specifications, the flavonoid content in the part connecting the taproot and the aboveground stem was significantly higher than that in other parts. The results of large-scale data showed that the flavonoid content gradually increased with the increase in the number of heads. There were significant differences between the flavonoid content in most specifications and grades, especially the 20-head P. notoginseng and countless head P. notoginseng, whose content was significantly lower and significantly higher than that of other specifications and grades, respectively. This study provides a scientific basis for the study of the effective components and quality control of P. notoginseng from the perspective of flavonoids.
Flavonoids/analysis*
;
Anthocyanins/analysis*
;
Quercetin
;
Chromatography, High Pressure Liquid/methods*
;
Kaempferols
;
Tandem Mass Spectrometry/methods*
;
Glycosides
3.Diacylated anthocyanins from purple sweet potato (Ipomoeabatatas L.) attenuate hyperglycemia and hyperuricemia in mice induced by a high-fructose/high-fat diet.
Luhong SHEN ; Yang YANG ; Jiuliang ZHANG ; Lanjie FENG ; Qing ZHOU
Journal of Zhejiang University. Science. B 2023;24(7):587-601
Studies have shown that targeting xanthine oxidase (XO) can be a feasible treatment for fructose-induced hyperuricemia and hyperglycemia. This study aimed to evaluate the dual regulatory effects and molecular mechanisms of diacylated anthocyanins from purple sweet potato (diacylated AF-PSPs) on hyperglycemia and hyperuricemia induced by a high-fructose/high-fat diet. The body weight, organ index, serum biochemical indexes, and liver antioxidant indexes of mice were measured, and the kidneys were observed in pathological sections. The relative expression levels of messenger RNAs (mRNAs) of fructose metabolism pathway enzymes in kidney were detected by fluorescent real-time quantitative polymerase chain (qPCR) reaction technique, and the expression of renal transporter protein and inflammatory factor pathway protein was determined by immunohistochemistry (IHC) technique. Results showed that diacylated AF-PSPs alleviated hyperuricemia in mice, and that this effect might be related to the regulation of liver XO activity, lipid accumulation, and relevant renal transporters. Diacylated AF-PSPs reduced body weight and relieved lipid metabolism disorder, liver lipid accumulation, and liver oxidative stress, thereby enhancing insulin utilization and sensitivity, lowering blood sugar, and reducing hyperglycemia in mice. Also, diacylated AF-PSPs restored mRNA levels related to renal fructose metabolism, and reduced kidney injury and inflammation. This study provided experimental evidence for the mechanisms of dual regulation of blood glucose and uric acid (UA) by diacylated AF-PSPs and their utilization as functional foods in the management of metabolic syndrome.
Mice
;
Animals
;
Hyperuricemia/drug therapy*
;
Diet, High-Fat/adverse effects*
;
Anthocyanins/chemistry*
;
Ipomoea batatas/chemistry*
;
Fructose/adverse effects*
;
Hyperglycemia/drug therapy*
;
Lipids
4.In vivo antioxidant activity of rabbiteye blueberry (Vaccinium ashei cv. 'Brightwell') anthocyanin extracts.
Jing WANG ; Xingyu ZHAO ; Jiawei ZHENG ; Daniela D HERRERA-BALANDRANO ; Xiaoxiao ZHANG ; Wuyang HUANG ; Zhongquan SUI
Journal of Zhejiang University. Science. B 2023;24(7):602-616
Blueberries are rich in phenolic compounds including anthocyanins which are closely related to biological health functions. The purpose of this study was to investigate the antioxidant activity of blueberry anthocyanins extracted from 'Brightwell' rabbiteye blueberries in mice. After one week of adaptation, C57BL/6J healthy male mice were divided into different groups that were administered with 100, 400, or 800 mg/kg blueberry anthocyanin extract (BAE), and sacrificed at different time points (0.1, 0.5, 1, 2, 4, 8, or 12 h). The plasma, eyeball, intestine, liver, and adipose tissues were collected to compare their antioxidant activity, including total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity and glutathione-peroxidase (GSH-PX/GPX) content, and the oxidative stress marker malondialdehyde (MDA) level. The results showed that blueberry anthocyanins had positive concentration-dependent antioxidant activity in vivo. The greater the concentration of BAE, the higher the T-AOC value, but the lower the MDA level. The enzyme activity of SOD, the content of GSH-PX, and messenger RNA (mRNA) levels of Cu,Zn-SOD, Mn-SOD, and GPX all confirmed that BAE played an antioxidant role after digestion in mice by improving their antioxidant defense. The in vivo antioxidant activity of BAE indicated that blueberry anthocyanins could be developed into functional foods or nutraceuticals with the aim of preventing or treating oxidative stress-related diseases.
Male
;
Mice
;
Animals
;
Antioxidants/pharmacology*
;
Blueberry Plants
;
Anthocyanins/pharmacology*
;
Mice, Inbred C57BL
;
Superoxide Dismutase
;
Plant Extracts/pharmacology*
;
Superoxide Dismutase-1
5.Cloning and functional analysis of flavanone 3-hydroxylase gene in Rhododendron hybridum Hort.
Baoxin JIANG ; Zehang WU ; Guoxia YANG ; Sijia LÜ ; Yonghong JIA ; Yueyan WU ; Ruoyi ZHOU ; Xiaohong XIE
Chinese Journal of Biotechnology 2023;39(2):653-669
Flavanone 3-hydroxylase (F3H) is a key enzyme in the synthesis of phycocyanidins. In this experiment, the petals of red Rhododendron hybridum Hort. at different developmental stages were used as experimental materials. The R. hybridum flavanone 3-hydroxylase (RhF3H) gene was cloned using reverse transcription PCR (RT-PCR) and rapid-amplification of cDNA ends (RACE) techniques, and bioinformatics analyses were performed. Petal RhF3H gene expression at different developmental stages were analyzed by using quantitative real-time polymerase chain reaction (qRT-PCR). A pET-28a-RhF3H prokaryotic expression vector was constructed for the preparation and purification of RhF3H protein. A pCAMBIA1302-RhF3H overexpression vector was constructed for genetic transformation in Arabidopsis thaliana by Agrobacterium-mediated method. The results showed that the R. hybridum Hort. RhF3H gene is 1 245 bp long, with an open reading frame of 1 092 bp, encoding 363 amino acids. It contains a Fe2+ binding motif and a 2-ketoglutarate binding motif of the dioxygenase superfamily. Phylogenetic analysis showed that the R. hybridum RhF3H protein is most closely related to the Vaccinium corymbosum F3H protein. qRT-PCR analysis showed that the expression level of the red R. hybridum RhF3H gene tended to increase and then decrease in the petals at different developmental stages, with the highest expression at middle opening stage. The results of the prokaryotic expression showed that the size of the induced protein of the constructed prokaryotic expression vector pET-28a-RhF3H was about 40 kDa, which was similar to the theoretical value. Transgenic RhF3H Arabidopsis thaliana plants were successfully obtained, and PCR identification and β-glucuronidase (GUS) staining demonstrated that the RhF3H gene was integrated into the genome of A. thaliana plants. qRT-PCR, total flavonoid and anthocyanin contentanalysis showed that RhF3H was significantly higher expressed in the transgenic A. thaliana relative to that of the wild type, and its total flavonoid and anthocyanin content were significantly increased. This study provides a theoretical basis for investigating the function of RhF3H gene, as well as for studying the molecular mechanism of flower color in R. simsiib Planch.
Arabidopsis/metabolism*
;
Rhododendron/metabolism*
;
Amino Acid Sequence
;
Anthocyanins/metabolism*
;
Phylogeny
;
Flavonoids/metabolism*
;
Cloning, Molecular
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
6.Mechanism of Berberis atrocarpa anthocyanin against Alzheimer's disease based on network pharmacology and experimental verification.
Hai-Yan BAO ; Ling CHEN ; Ying YANG ; Min LI ; Hui-Min LI ; Ying-Ying KANG ; Jian-Guang LI
China Journal of Chinese Materia Medica 2023;48(3):778-788
This study aimed to explore the potential mechanism of Berberis atrocarpa Schneid. anthocyanin against Alzheimer's disease(AD) based on network pharmacology, molecular docking technology, and in vitro experiments. Databases were used to screen out the potential targets of the active components of B. atrocarpa and the targets related to AD. STRING database and Cytoscape 3.9.0 were adopted to construct a protein-protein interaction(PPI) network and carry out topological analysis of the common targets. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were performed on the target using the DAVID 6.8 database. Molecular docking was conducted to the active components and targets related to the nuclear factor kappa B(NF-κB)/Toll-like receptor 4(TLR4) pathway. Finally, lipopolysaccharide(LPS) was used to induce BV2 cells to establish the model of AD neuroinflammation for in vitro experimental validation. In this study, 426 potential targets of active components of B. atrocarpa and 329 drug-disease common targets were obtained, and 14 key targets were screened out by PPI network. A total of 623 items and 112 items were obtained by GO functional enrichment analysis and KEGG pathway enrichment analysis, respectively. Molecular docking results showed that NF-κB, NF-κB inhibitor(IκB), TLR4, and myeloid differentiation primary response 88(MyD88) had good binding abilities to the active components, and malvidin-3-O-glucoside had the strongest binding ability. Compared with the model group, the concentration of nitric oxide(NO) decreased at different doses of malvidin-3-O-glucoside without affecting the cell survival rate. Meanwhile, malvidin-3-O-glucoside down-regulated the protein expressions of NF-κB, IκB, TLR4, and MyD88. This study uses network pharmacology and experimental verification to preliminarily reveal that B. atrocarpa anthocyanin can inhibit LPS-induced neuroinflammation by regulating the NF-κB/TLR4 signaling pathway, thereby achieving the effect against AD, which provides a theoretical basis for the study of its pharmacodynamic material basis and mechanism.
NF-kappa B
;
Alzheimer Disease
;
Network Pharmacology
;
Anthocyanins
;
Berberis
;
Lipopolysaccharides
;
Molecular Docking Simulation
;
Myeloid Differentiation Factor 88
;
Neuroinflammatory Diseases
;
Toll-Like Receptor 4
;
I-kappa B Proteins
7.Protective Effects of Anthocyanins Extracted from Vaccinium Uliginosum on 661W Cells Against Microwave-Induced Retinal Damage.
Lan YIN ; Si-Jun FAN ; Mao-Nian ZHANG
Chinese journal of integrative medicine 2022;28(7):620-626
OBJECTIVE:
To study the protective effect of anthocyanins extracted from Vaccinium Uliginosum (VU) on retinal 661W cells against microwave radiation induced retinal injury.
METHODS:
661W cells were divided into 6 groups, including control, model [661W cells radiated by microwave (30 mW/cm2, 1 h)] and VU groups [661W cells pretreated with anthocyanins extracted from VU (25, 50, 100 and 200 µg/mL, respectively) for 48 h, and radiated by microwave 30 mW/cm2, 1 h]. After treatment with different interventions, the cell apoptosis index (AI) was determined using Heochst staining; contents of malonaldehyde (MDA), glutataione (GSH), and activity of superoxide dismutase (SOD) were measured. mRNA expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1(HO-1) were detected by real time quantitative polymerase chain reaction, and the expression of HO-1 protein was examined by Western blot analysis. Nucleus and cytoplasm were separated and Nrf2 protein expression was further verified by Western blot analysis.
RESULTS:
There was significant difference in AI among the groups (F=322.83, P<;0.05). Compared with the control group, AI was significantly higher in the model group and was lower in 4 VU-pretreated groups (P<;0.05). Linear regression analysis showed the decline of AI was in a dose-dependent manner with VU treatment (r=0.8419, P<;0.05). The MDA and GSH contents of 661W cells in VU-treated groups were significantly lower than the model group (P<;0.05). Compared with the model group, the SOD activity in the VU-treated groups (50, 100 and 200 µg/mL) was significantly higher (all P<;0.05). The Nrf2 and HO-1 mRNA expressions were slightly increased after irradiation, and obviously increased in 100 µg/mL VU-treated group. After irradiation, the relative expressions of HO-1 and Nrf2 proteins in nucleus were slightly increased (P<;0.05), and the changes in cytoplasm were not obvious, whereas it was significantly increased in both nucleus and cytoplasm in the VU treatment groups.
CONCLUSIONS
Anthocyanins extracted from VU could reduce apoptosis, stabilize cell membrane, and alleviate oxidant injury of mouse retinal photoreceptor 661W cells. The mechanism might be through activating Nrf2/HO-1 signal pathway and inducing HO-1 transcription and translation.
Animals
;
Anthocyanins/therapeutic use*
;
Blueberry Plants/metabolism*
;
Heme Oxygenase-1/metabolism*
;
Mice
;
Microwaves
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
RNA, Messenger/metabolism*
;
Superoxide Dismutase/metabolism*
8.Cloning, structure analysis and functional verification of MYB10 in Ribes L.
Qiuying FENG ; Xue LIU ; Linlin YANG ; Zeyuan FU ; Qijiang XU
Chinese Journal of Biotechnology 2022;38(1):275-286
This study aims to investigate the molecular mechanism of the transcription factor MYB10, which is involved in anthocyanin biosynthesis, in different colors of Ribes L. fruitification. Rapid amplification of cDNA ends (RACE) was used to clone the MYB10 genes from Ribes nigrum L. (RnMYB10), Ribes rubrum L. (RrMYB10), and Ribes album L. (RaMYB10), respectively. Phylogenetic analysis showed that RnMYB10 and RrMYB10 were evolutionarily homologous. Real-time quantitative PCR (RT-qPCR) showed that the expression of MYB10 in the fruits of Ribes nigrum L. was higher than that of Ribes rubrum L. and much higher than that of Ribes album L. The expression of RnMYB10 and RrMYB10 increased at first and then decreased as the fruit diameter increased and the fruit color deepened (the maximum expression level was reached at 75% of the fruit color change), while the expression level of RaMYB10 was very low. Overexpression of RnMYB10 and RrMYB10 in Arabidopsis thaliana resulted in purple petioles and leaves, whereas overexpression of RaMYB10 resulted in no significant color changes. This indicates that MYB10 gene plays an important role in the coloration of Ribes L. fruit.
Anthocyanins
;
Cloning, Molecular
;
Fruit
;
Gene Expression Regulation, Plant
;
Phylogeny
;
Plant Proteins/metabolism*
;
Ribes/genetics*
9.Advances in the molecular regulation of anthocyanins in solanaceous vegetables.
Huiqin YANG ; Jiali WANG ; Sirui LI ; Yi NIU ; Qinglin TANG ; Dayong WEI ; Yongqing WANG ; Zhimin WANG
Chinese Journal of Biotechnology 2022;38(5):1738-1752
Anthocyanins are widely distributed water-soluble pigments that not only give the fruit colorful appearances, but also are important sources of natural edible pigments. In recent years, the interest on anthocyanins of solanaceous vegetables is increasing. This paper summarized the structure of anthocyanins and its biosynthetic pathway, the structural genes and regulatory genes involved in the biosynthesis of anthocyanins in solanaceous vegetables, as well as the environmental factors affecting the biosynthesis. This review may help clarify the synthesis and regulation mechanism of anthocyanins in solanaceous vegetables and make better use of anthocyanins for quality breeding of fruit colors.
Anthocyanins/metabolism*
;
Fruit/genetics*
;
Gene Expression Regulation, Plant
;
Plant Breeding
;
Vegetables/genetics*
10.Comparative metabolomics provides novel insights into the basis of petiole color differences in celery (Apiumgraveolens L.).
Mengyao LI ; Jie LI ; Haohan TAN ; Ya LUO ; Yong ZHANG ; Qing CHEN ; Yan WANG ; Yuanxiu LIN ; Yunting ZHANG ; Xiaorong WANG ; Haoru TANG
Journal of Zhejiang University. Science. B 2022;23(4):300-314
Plant metabolites are important for plant development and human health. Plants of celery (Apiumgraveolens L.) with different-colored petioles have been formed in the course of long-term evolution. However, the composition, content distribution, and mechanisms of accumulation of metabolites in different-colored petioles remain elusive. Using ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS), 1159 metabolites, including 100 lipids, 72 organic acids and derivatives, 83 phenylpropanoids and polyketides, and several alkaloids and terpenoids, were quantified in four celery cultivars, each with a different petiole color. There were significant differences in the types and contents of metabolites in celery with different-colored petioles, with the most striking difference between green celery and purple celery, followed by white celery and green celery. Annotated analysis of metabolic pathways showed that the metabolites of the different-colored petioles were significantly enriched in biosynthetic pathways such as anthocyanin, flavonoid, and chlorophyll pathways, suggesting that these metabolic pathways may play a key role in determining petiole color in celery. The content of chlorophyll in green celery was significantly higher than that in other celery cultivars, yellow celery was rich in carotenoids, and the content of anthocyanin in purple celery was significantly higher than that in the other celery cultivars. The color of the celery petioles was significantly correlated with the content of related metabolites. Among the four celery cultivars, the metabolites of the anthocyanin biosynthesis pathway were enriched in purple celery. The results of quantitative real-time polymerase chain reaction (qRT-PCR) suggested that the differential expression of the chalcone synthase (CHS) gene in the anthocyanin biosynthesis pathway might affect the biosynthesis of anthocyanin in celery. In addition, HPLC analysis revealed that cyanidin is the main pigment in purple celery. This study explored the differences in the types and contents of metabolites in celery cultivars with different-colored petioles and identified key substances for color formation. The results provide a theoretical basis and technical support for genetic improvement of celery petiole color.
Anthocyanins
;
Apium/metabolism*
;
Chlorophyll/metabolism*
;
Color
;
Gene Expression Regulation, Plant
;
Humans
;
Metabolomics
;
Plant Proteins/genetics*
;
Tandem Mass Spectrometry

Result Analysis
Print
Save
E-mail