1.Inhibition of glutaminolysis alleviates myocardial fibrosis induced by angiotensin II.
Pan-Pan WANG ; Hao-Miao BAI ; Si-Yu HE ; Zi-Qi XIA ; Mei-Jie LIU ; Jiong AN ; Jia-Heng ZHOU ; Chen-Han LI ; Wei ZHANG ; Xing ZHANG ; Xin-Pei WANG ; Jia LI
Acta Physiologica Sinica 2023;75(2):179-187
The present study was aimed to investigate the role and mechanism of glutaminolysis of cardiac fibroblasts (CFs) in hypertension-induced myocardial fibrosis. C57BL/6J mice were administered with a chronic infusion of angiotensin II (Ang II, 1.6 mg/kg per d) with a micro-osmotic pump to induce myocardial fibrosis. Masson staining was used to evaluate myocardial fibrosis. The mice were intraperitoneally injected with BPTES (12.5 mg/kg), a glutaminase 1 (GLS1)-specific inhibitor, to inhibit glutaminolysis simultaneously. Immunohistochemistry and Western blot were used to detect protein expression levels of GLS1, Collagen I and Collagen III in cardiac tissue. Neonatal Sprague-Dawley (SD) rat CFs were treated with 4 mmol/L glutamine (Gln) or BPTES (5 μmol/L) with or without Ang II (0.4 μmol/L) stimulation. The CFs were also treated with 2 mmol/L α-ketoglutarate (α-KG) under the stimulation of Ang II and BPTES. Wound healing test and CCK-8 were used to detect CFs migration and proliferation respectively. RT-qPCR and Western blot were used to detect mRNA and protein expression levels of GLS1, Collagen I and Collagen III. The results showed that blood pressure, heart weight and myocardial fibrosis were increased in Ang II-treated mice, and GLS1 expression in cardiac tissue was also significantly up-regulated. Gln significantly promoted the proliferation, migration, mRNA and protein expression of GLS1, Collagen I and Collagen III in the CFs with or without Ang II stimulation, whereas BPTES significantly decreased the above indices in the CFs. α-KG supplementation reversed the inhibitory effect of BPTES on the CFs under Ang II stimulation. Furthermore, in vivo intraperitoneal injection of BPTES alleviated cardiac fibrosis of Ang II-treated mice. In conclusion, glutaminolysis plays an important role in the process of cardiac fibrosis induced by Ang II. Targeted inhibition of glutaminolysis may be a new strategy for the treatment of myocardial fibrosis.
Rats
;
Mice
;
Animals
;
Rats, Sprague-Dawley
;
Angiotensin II/pharmacology*
;
Fibroblasts
;
Mice, Inbred C57BL
;
Fibrosis
;
Collagen/pharmacology*
;
Collagen Type I/metabolism*
;
RNA, Messenger/metabolism*
;
Myocardium/pathology*
2.Blockade of Endogenous Angiotensin-(1-7) in Hypothalamic Paraventricular Nucleus Attenuates High Salt-Induced Sympathoexcitation and Hypertension.
Xiao-Jing YU ; Yu-Wang MIAO ; Hong-Bao LI ; Qing SU ; Kai-Li LIU ; Li-Yan FU ; Yi-Kang HOU ; Xiao-Lian SHI ; Ying LI ; Jian-Jun MU ; Wen-Sheng CHEN ; Wei CUI ; Guo-Qing ZHU ; Philip J EBENEZER ; Joseph FRANCIS ; Yu-Ming KANG
Neuroscience Bulletin 2019;35(1):47-56
Angiotensin (Ang)-(1-7) is an important biologically-active peptide of the renin-angiotensin system. This study was designed to determine whether inhibition of Ang-(1-7) in the hypothalamic paraventricular nucleus (PVN) attenuates sympathetic activity and elevates blood pressure by modulating pro-inflammatory cytokines (PICs) and oxidative stress in the PVN in salt-induced hypertension. Rats were fed either a high-salt (8% NaCl) or a normal salt diet (0.3% NaCl) for 10 weeks, followed by bilateral microinjections of the Ang-(1-7) antagonist A-779 or vehicle into the PVN. We found that the mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA), and plasma norepinephrine (NE) were significantly increased in salt-induced hypertensive rats. The high-salt diet also resulted in higher levels of the PICs interleukin-6, interleukin-1beta, tumor necrosis factor alpha, and monocyte chemotactic protein-1, as well as higher gp91 expression and superoxide production in the PVN. Microinjection of A-779 (3 nmol/50 nL) into the bilateral PVN of hypertensive rats not only attenuated MAP, RSNA, and NE, but also decreased the PICs and oxidative stress in the PVN. These results suggest that the increased MAP and sympathetic activity in salt-induced hypertension can be suppressed by blockade of endogenous Ang-(1-7) in the PVN, through modulation of PICs and oxidative stress.
Angiotensin I
;
antagonists & inhibitors
;
metabolism
;
Animals
;
Antioxidants
;
pharmacology
;
Blood Pressure
;
drug effects
;
Hypertension
;
chemically induced
;
drug therapy
;
Male
;
Oxidative Stress
;
drug effects
;
Paraventricular Hypothalamic Nucleus
;
drug effects
;
Peptide Fragments
;
antagonists & inhibitors
;
metabolism
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Sodium Chloride, Dietary
;
pharmacology
3.Protective Effect of Angiotensin (1-7) on Silicotic Fibrosis in Rats.
Bo Nan ZHANG ; Hong XU ; Xue Min GAO ; Gui Zhen ZHANG ; Xin ZHANG ; Fang YANG
Biomedical and Environmental Sciences 2019;32(6):419-426
OBJECTIVE:
Silicosis, caused by inhalation of silica dust, is the most serious occupational disease in China and the aim of present study was to explore the protective effect of Ang (1-7) on silicotic fibrosis and myofibroblast differentiation induced by Ang II.
METHODS:
HOPE-MED 8050 exposure control apparatus was used to establish the rat silicosis model. Pathological changes and collagen deposition of the lung tissue were examined by H.E. and VG staining, respectively. The localizations of ACE2 and α-smooth muscle actin (α-SMA) in the lung were detected by immunohistochemistry. Expression levels of collagen type I, α-SMA, ACE2, and Mas in the lung tissue and fibroblasts were examined by western blot. Levels of ACE2, Ang (1-7), and Ang II in serum were determined by ELISA. Co-localization of ACE2 and α-SMA in fibroblasts was detected by immunofluorescence.
RESULTS:
Ang (1-7) induced pathological changes and enhanced collagen deposition in vivo. Ang (1-7) decreased the expressions of collagen type I and α-SMA and increased the expressions of ACE2 and Mas in the silicotic rat lung tissue and fibroblasts stimulated by Ang II. Ang (1-7) increased the levels of ACE2 and Ang (1-7) and decreased the level of Ang II in silicotic rat serum. A779 enhanced the protective effect of Ang (1-7) in fibroblasts stimulated by Ang II.
CONCLUSION
Ang (1-7) exerted protective effect on silicotic fibrosis and myofibroblast differentiation induced by Ang II by regulating ACE2-Ang (1-7)-Mas axis.
Actins
;
metabolism
;
Angiotensin I
;
blood
;
pharmacology
;
therapeutic use
;
Angiotensin II
;
blood
;
Animals
;
Animals, Newborn
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Collagen Type I
;
metabolism
;
Disease Models, Animal
;
Lung
;
metabolism
;
pathology
;
Myofibroblasts
;
drug effects
;
Peptide Fragments
;
blood
;
pharmacology
;
therapeutic use
;
Peptidyl-Dipeptidase A
;
metabolism
;
Rats, Wistar
;
Silicosis
;
metabolism
;
pathology
;
prevention & control
4.Effect of Tripterygium Glycosides Tablets on synovial angiogenesis in rats with type Ⅱ collagen induced arthritis.
Jing-Xia WANG ; Chun-Fang LIU ; Yi-Qun LI ; Xiao-Hui SU ; Li-Ling LIU ; Ya-Ge TIAN ; Jin-Xia WANG ; Ke-Xin JIA ; Na LIN
China Journal of Chinese Materia Medica 2019;44(16):3441-3447
To observe the effect of Tripterygium Glycosides Tablets on angiogenesis of rats with type Ⅱ collagen-induced arthritis( CIA) and on the tube formation of human umbilical vein endothelial cells( HUVEC) in vitro. The HUVEC were induced by 20 μg·L-1 vascular endothelial growth factor( VEGF) in vitro,and were treated with 0. 1,1,10 mg·L-1 Tripterygium Glycosides Tablets continuously for 7 hours. The numbers of branches of tube formation were measured. SD rats were immunized to establish CIA. CIA rats were treated with 9,18,36 mg·kg-1·d-1 Tripterygium Glycosides Tablets for 42 days. Histopathological examination( HE) was performed to observe the vascular morphology and vascular density in the synovial membrane of the inflamed joints. Immunohistochemistry and immunofluorescence were performed to observe the expression of platelets-endothelial cell adhesion molecule( CD31) and αsmooth muscle actin( αSMA) in synovial membrane. Immunohistochemistry and Western blot were performed to observe the expression of hypoxia-inducible factors 1α( HIF1α) and angiotensin 1( Ang1) in the synovial tissue. The results showed that the numbers of branches of tube formation of HUVEC induced by VEGF were improved,and declined significantly after treated by Tripterygium Glycosides Tablets. Compared with the normal group,the vascular density,CD31 positive expression,CD31 +/αSMA-immature and total vascular positive expression in the synovial membrane of the model group were significantly increased,and so as HIF1α and Ang1 in the synovium. Tripterygium Glycosides Tablets reduced the synovial vascular density and inhibited the positive expression of CD31,CD31+/αSMA-immature blood vessels and total vascular,but has no effect on CD31+/αSMA+mature blood vessels. Tripterygium Glycosides Tablets also inhibited the expression of HIF1α and Ang1 in synovial membrane of inflammatory joints. Our results demonstrated that Tripterygium Glycosides Tablets could inhibit the angiogenesis of synovial tissue in CIA rats and the tube formation of HUVEC,which is related to the down-regulation of HIF1α/Ang1 signal axis.
Angiogenesis Inhibitors
;
pharmacology
;
Angiotensin I
;
metabolism
;
Animals
;
Arthritis, Experimental
;
chemically induced
;
drug therapy
;
Drugs, Chinese Herbal
;
pharmacology
;
Glycosides
;
pharmacology
;
Human Umbilical Vein Endothelial Cells
;
drug effects
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Synovial Membrane
;
drug effects
;
Tablets
;
Tripterygium
;
chemistry
;
Vascular Endothelial Growth Factor A
5.Regulation of angiotensin-converting enzyme 2-angiotensin (1-7)-Mas axis provides a new target for the treatment of cardiac remodeling and heart failure.
Chinese Critical Care Medicine 2019;31(11):1425-1428
Cardiac remodeling is a common pathological manifestation of various end-stage cardiovascular diseases, which leads to myocardial diastolic and systolic dysfunction, low ejection fraction which cannot meet the needs of systemic tissue and organ metabolism, and ultimate progress into heart failure. Excessive activation of the classical renin angiotensin system (RAS), which is the angiotensin-converting enzyme-angiotensin II-type 1 angiotensin II receptor axis (ACE2-Ang II-AT1R axis), plays a key role in the pathological process of cardiac remodeling and heart failure. Angiotensin-converting enzyme 2-angiotensin (1-7)-Mas axis [ACE2-Ang (1-7)-Mas axis] is an endogenous negative regulatory pathway of classical RAS, which can reduce its harmful effects. ACE2 is a monocarboxypeptidase that can hydrolyse Ang II and produce Ang (1-7), which has cardio-protective effects. Ang (1-7), via endogenous receptor Mas, plays the role of vasodilating, anti-proliferation and anti-differentiation, anti-fibrosis, anti-thrombosis and reversing myocardial remodeling. In recent years, with increasingly growing studies on the ACE2-Ang (1-7)-Mas axis, there are more understanding about their metabolic characteristics and mechanism of action. This article describes the role of ACE2 and Ang (1-7) in cardiac remodeling and heart failure and the related mechanisms, and discusses the potential benefits by regulating ACE2 activity and Ang (1-7) levels in clinical and experimental studies, hopefully providing potential therapeutic strategies.
Angiotensin I/metabolism*
;
Heart Failure
;
Humans
;
Peptide Fragments/metabolism*
;
Ventricular Remodeling
6.Role of ACE2-Ang (1-7)-Mas receptor axis in heart failure with preserved ejection fraction with hypertension.
Jiangbiao YU ; Yonggang WU ; Yinzhuang ZHANG ; Licheng ZHANG ; Qilin MA ; Xiuju LUO
Journal of Central South University(Medical Sciences) 2018;43(7):738-746
To investigate changes in the angiotensin converting enzyme 2 (ACE2) and angiotensin (1-7) [Ang (1-7)] and to explore the role of ACE2-Ang (1-7)-Mas receptor axis in hypertension with heart failure with preserved ejection fraction (HFPEF).
Methods: A total of 70 patients with primary hypertension and preserved left ventricular ejection fraction (LVEF>50%) were recruited and patients were divided into a hypertension group (HBP) and a heart failure with preserved ejection fraction group (HFpEF) according to the diagnostic criteria of HFpEF. Thirty-five healthy participants were selected randomly as a control group. Enzyme linked immunosorbent assays (ELISA) method was used to detect concentration of Ang (1-7), ACE2, angiotensin II (Ang II), brain natriuretic peptide (BNP) in plasma. Male Sprague- Dawley (SD) rats was randomly divided into 2 groups: An HFpEF group (n=16) and a sham group (n=8). Rats (n=8) in the AAC group were given Ang (1-7) [0.5 mg/(kg.d), intraperitoneally] for 6 weeks, and the rest were given equal dose normal saline. Then all the rats were killed, and the hearts were taken out for hematoxylineosin (HE) staining. The protein expressions of angiotensin converting enzyme (ACE), ACE2, and Mas receptor were detected by Western blot.
Results: The BNP and Ang II were significantly increased in the HBP group and the HFpEF group compared with the control group (P<0.01). There were not significantly different in levels of ACE2 and Ang (1-7) between the HBP group and control group (P>0.05), whereas those levels were significantly increased in the HFpEF group compared with the HBP group and control group (P<0.01). HE staining showed obvious hypertrophy of myocardial cell in the AAC group compared with the sham group. Hypertrophy of myocardial cell in the AAC+Ang (1-7) group was significantly higher than that in the AAC group. Expressions of ACE, ACE2, and Mas receptor proteins were significantly higher in the AAC group than those in the sham group (P<0.05), while the expressions of ACE2 and Mas receptor proteins in the AAC+Ang (1-7) group were significantly higher than those in the AAC group (P<0.05). There was no significant difference in the ACE protein expression between groups (P>0.05).
Conclusion: ACE2 and Ang (1-7) are important predictive factors for the severity of heart failure and myocardial remodeling of HFpEF with hypertension; ACE2-Ang (1-7)-Mas receptor axis may play a protective role in preventing myocardial remodeling in HFpEF with hypertension.
Angiotensin I
;
physiology
;
Angiotensin II
;
Animals
;
Atrial Remodeling
;
physiology
;
Case-Control Studies
;
Enzyme-Linked Immunosorbent Assay
;
Heart Failure
;
metabolism
;
physiopathology
;
Humans
;
Hypertension
;
metabolism
;
physiopathology
;
Male
;
Peptide Fragments
;
physiology
;
Peptidyl-Dipeptidase A
;
physiology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, G-Protein-Coupled
;
physiology
;
Stroke Volume
;
Ventricular Function, Left
;
physiology
;
Ventricular Remodeling
;
physiology
7.Effect of Astragali Radix in improving early renal damage in metabolic syndrome rats through ACE2/Mas pathway.
Qiong-ying WANG ; Wei LIANG ; Cheng JIANG ; Ning-yin LI ; Han XU ; Mi-na YANG ; Xin LIN ; Heng YU ; Peng CHANG ; Jing YU
China Journal of Chinese Materia Medica 2015;40(21):4245-4250
To study the expression of angiotensin converting enzyme 2 (ACE2) and angiotensin (Ang) 1-7 specific receptor Mas protain in renal blood vessels of metabolic syndrome ( MS) rats and its anti-oxidative effect. A total of 80 male SD rats were divided into four groups: the normal control group (NC, the same volume of normal saline), the MS group (high fat diet), the MS + Astragali Radix group (MS + HQ, 6 g x kg(-1) x d(-1) in gavage) and the MS + Valsartan group (MS + XST, 30 mg x kg(-1) x d(-1) in gavage). After four weeks of intervention, their general indexes, biochemical indexes and blood pressure were measured; plasma and renal tissue Ang II, malondialdehyde (MDA) and superoxide demutase (SOD) levels were measured with radioimmunoassay. The protein expressions of Mas receptor, AT1R, ACE and ACE2 were detected by western blot analysis. According to the result, compared with the NC group, the MS group and the MS + HQ group showed significant increases in systolic and diastolic pressures, body weight, fasting glucose, fasting insulin, triglycerides, free fatty acid and Ang II level of MS rats (P < 0.05). The MS + XST group showed notable decreases in systolic and diastolic pressures than that of the MS group. The MS group showed significant increases in the SOD activity and NO level and decrease in the MDA level after being intervened with Astragali Radix. ACE and AT1R protein expressions in renal tissues of the MS group were higher than that in the NC group, but with lower ACE2 and -Mas receptor expressions (all P < 0.05). Compared with the MS group, the MS + HQ group showed significant increase in Mas receptor expression in renal tissues, whereas the MS + XST group showed notable decrease in AT1R (all P < 0.05). In conclusion, Astragali Radix can increase the Mas receptor expressions in renal tissues, decrease ACE expression and change local Ang II, MDA, NO and SOD in kidneys, so as to protect early damages in renal tissues.
Angiotensin I
;
metabolism
;
Animals
;
Astragalus Plant
;
chemistry
;
Blood Glucose
;
metabolism
;
Blood Pressure
;
drug effects
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Kidney
;
drug effects
;
injuries
;
metabolism
;
Male
;
Malondialdehyde
;
metabolism
;
Metabolic Syndrome
;
drug therapy
;
genetics
;
metabolism
;
physiopathology
;
Peptide Fragments
;
metabolism
;
Peptidyl-Dipeptidase A
;
genetics
;
metabolism
;
Proto-Oncogene Proteins
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, G-Protein-Coupled
;
genetics
;
metabolism
;
Signal Transduction
;
drug effects
8.Effects of angiotensin-(1-7) on hippocampal expressions of GFAP and GDNF and cognitive function in rats with diabetes mellitus.
Dongling ZHANG ; Qian XIAO ; Huiqiong LUO ; Kexiang ZHAO
Journal of Southern Medical University 2015;35(5):646-651
OBJECTIVETo explore the effects of angiotensin-(1-7) on the learning and memory abilities and the expressions of glial fibrillary acidic protein (GFAP) and glial cell line-derived neurotrophic factor (GDNF) in the hippocampus of diabetic rats.
METHODSForty male SD rats were randomly assigned into 4 groups, namely the control group, diabetic group, Ang(1-7)-treated diabetic group (DM1 group), and Ang-(1-7)- and Mas receptor antagonist A779-treated diabetic group (DM2 group). Diabetic rat models were established by a single intraperitoneal injection of streptozotocin (60 mg/kg). The cognitive function of the rats was assessed with Morris water maze (MWM) test. The expressions of GDNF in the hippocampus were examined by RT-PCR and Western blot. Nissl staining was performed to evaluate the morphological changes in rat hippocampus. The expressions of glial fibrillary acidic protein (GFAP, a key indicator of astrocytic reactivity) and caspase-3 were measured by immunohistochemistry.
RESULTSCompared with the control group, the diabetic rats exhibited significantly impaired learning and memory abilities (P<0.05) with lowered expression of GDNF and increased caspase-3 expression in the hippocampus (P<0.05) and significant hippocampal neuronal and astrocyte injuries (P<0.05). Treatment with Ang(1-7) obviously improved the learning and memory abilities of the diabetic rats (P<0.05), increased GDNF and GFAP expressions (P<0.05), lowered caspase-3 expression (P<0.05), and increased the number of surviving neurons in the hippocampus (P<0.05). Such effects of Ang(1-7) effect was blocked by treatment with A779 of the diabetic rats.
CONCLUSIONAng(1-7) can alleviate cognitive dysfunction in diabetic rats possibly by up-regulating the expressions of GFAP and GDNF and promoting neuron survival in the hippocampus.
Angiotensin I ; pharmacology ; Animals ; Astrocytes ; Caspase 3 ; metabolism ; Cognition ; Cognition Disorders ; Diabetes Mellitus, Experimental ; physiopathology ; Glial Cell Line-Derived Neurotrophic Factor ; metabolism ; Glial Fibrillary Acidic Protein ; metabolism ; Hippocampus ; cytology ; metabolism ; Male ; Memory ; Neurons ; Peptide Fragments ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Streptozocin
9.In vitro effect of total flavones of Fructus Chorspondiatis on expression of collagen type I and type III mRNA and protein of cultured rat cardiac fibroblasts.
Jun-Ping BAO ; Ming JIN ; Yu-Min YANG ; Xiao-Hui GAO ; Liang SHU ; Hui-Hui XING ; Lei JIA
Acta Pharmaceutica Sinica 2014;49(1):136-141
This study aims to investigate the effect of total flavones of Fructus Chorspondiatis (TFFC) on the mRNA and protein expression of collagen type I and III of rat cardiac fibroblasts (CFs) induced by angiotensin II (Ang II), and explore its anti-myocardial fibrosis molecular mechanism. Neonatal rat CFs were prepared from Sprague-Dawley rats (1-3 d after birth). The expression of collagen type I and III mRNA and protein were measured by RT-PCR and Western blotting, respectively. The study showed that stimulation of neonatal rat CFs with 100 nmol.L-1 of Ang II for 72 h resulted in a significant increase of the expression of collagen type I and III mRNA and protein. The changes on the expression level were blocked by TFFC. The results demonstrated that TFFC can inhibit myocardial fibrosis induced by Ang II in rats, which is probably associated with the collagen type I and III mRNA and protein levels up-regulated by Ang II, and TFFC was shown to decrease the expression levels of collagen type I and III mRNA and protein.
Anacardiaceae
;
chemistry
;
Angiotensin II
;
pharmacology
;
Animals
;
Animals, Newborn
;
Cells, Cultured
;
Collagen Type I
;
genetics
;
metabolism
;
Collagen Type III
;
genetics
;
metabolism
;
Dose-Response Relationship, Drug
;
Drugs, Chinese Herbal
;
administration & dosage
;
isolation & purification
;
pharmacology
;
Fibroblasts
;
cytology
;
metabolism
;
Flavones
;
administration & dosage
;
isolation & purification
;
pharmacology
;
Fruit
;
chemistry
;
Myocardium
;
cytology
;
metabolism
;
Plants, Medicinal
;
chemistry
;
RNA, Messenger
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
10.Effect of Chinese herbs for stasis removing and collaterals dredging upon angiotensin-converting enzyme 2-angiotensin-(1-7)-mas axis in the renal cortex of diabetic nephropathy rats.
Jing XU ; Er-wei MA ; Lu BAI ; Yun MA ; Qian GUO ; Rui JIA ; Jiang-hua ZHANG ; Zhi-qiang CHEN
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(6):714-721
OBJECTIVETo observe the effect of Chinese herbs for stasis removing and collaterals dredging (CHSRCD) upon angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas axis in the renal cortex of diabetic nephropathy rats.
METHODSTotally 89 male Sprague-Dawley rats were randomly divided into the blank control group (C group, n=22), the high-glucose high-fat control group (H group, n=10), and the streptozotocin (STZ)-injecting group (n=57). The diabetes rat model (n=50) was induced by feeding high-glucose high-fat diet in combination with intraperitoneal injection of STZ, which were further divided into the model group (M group, n=24), the irbesartan group (I group, n=13), and the CHSRCD (Z group, n=13). Rats in I and Z groups were intragastrically fed with suspension of irbesartan and CHSRCD, once daily for 16 weeks. Equal volume of drinking water was administrated to rats in the rest groups. Blood glucose and 24 h urine protein quantitation were tested at four time points. And the mRNA expression of ACE2 and Mas at various time points was detected by Real-time PCR, immunohistochemical assay, and Western blot. Quantitative analyses of ACE2 and Mas protein expression were performed at the end of week 16.
RESULTSCompared with the C group, blood glucose increased in the H and M groups (P < 0.01). It was higher in the H group (P < 0. 01). 24 h urine protein quantitation at different time points increased in the M group, and it was higher than that in the H group (P < 0.05). Compared with the M group, 24 h urine protein quantitation decreased at the end of week 8 in the I group, and at the end of week 8 and 16 in the Z group (P < 0.05). It was lower in the Z group than in the I group at the end of week 16 (P < 0.05). Compared with the C and H groups, the expression of ACE2 mRNA in the renal cortex was lower in the M group at the end of week 16 (P < 0.01). Compared with the M group, it was higher in the Z group (P < 0. 01). There was no statistical difference in the expressions of Mas mRNA at the end of week 16 between the C group and the M group (P > 0.05). It was lower in the M group than in the H group (P < 0.05). It was higher in the Z group than in the M group (P < 0.05), and higher than in the I group (P < 0.05). The expression of ACE2 and Mas protein in the M group decreased as time went by. The expression quantitation of ACE2 and Mas protein at the end of week 16 was lower in the M group than in the C group (P < 0.05). Compared with the M group, ACE2 expression of the Z group and Mas of the I and Z groups increased more significantly (P < 0. 05).
CONCLUSIONCHSRCD could play a role in renal protection for diabetic nephropathy rats by up-regulating the mRNA and protein expression of ACE2 and Mas, promoting the ACE2-Ang-(1-7)-Mas axis, and lowering urinary protein.
Angiotensin I ; metabolism ; Animals ; Diabetes Mellitus, Experimental ; metabolism ; Diabetic Nephropathies ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Kidney Cortex ; metabolism ; Male ; Peptide Fragments ; metabolism ; Peptidyl-Dipeptidase A ; metabolism ; Proto-Oncogene Proteins ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, G-Protein-Coupled ; metabolism

Result Analysis
Print
Save
E-mail