1.Preparation and Evaluation of Clinical-Grade Human Umbilical Cord-Derived Mesenchymal Stem Cells with High Expression of Hematopoietic Supporting Factors.
Jie TANG ; Pei-Lin LI ; Xiao-Yu ZHANG ; Xiao-Tong LI ; Fu-Hao YU ; Jia-Yi TIAN ; Run-Xiang XU ; Bo-Feng YIN ; Li DING ; Heng ZHU
Journal of Experimental Hematology 2025;33(3):892-898
OBJECTIVE:
To prepare clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSC) with high expression of hematopoietic supporting factors and evaluate their stem cell characteristics.
METHODS:
Fetal umbilical cord tissues were collected from healthy postpartum women during full-term cesarean section. Wharton's jelly was mechanically separated and hUC-MSCs were obtained by explant culture method and enzyme digestion method in an animal serum-free culture system with addition of human platelet lysate. The phenotypic characteristics of hUC-MSCs obtained by two methods were detected by flow cytometry. The differences in proliferation ability between the two groups of hUC-MSCs were identified through CCK-8 assay and colony forming unit-fibroblast (CFU-F) assay. The differences in multilineage differentiation potential between the two groups of hUC-MSCs were identified through induction of adipogenic, osteogenic, and chondrogenic differentiation. The mRNA expression levels of hematopoietic supporting factors such as SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in the two groups of hUC-MSCs were identified by real-time fluorescence quantiative PCR(RT-qPCR).
RESULTS:
The results of flow cytometry showed that hUC-MSCs obtained by the two methods both expressed high levels of CD73, CD90 and CD105, while lowly expressed CD31, CD45 and HLA-DR. The results of CCK-8 and CFU-F assay showed that the proliferation ability of hUC-MSCs obtained by explant culture method was better than those obtained by enzyme digestion method. The results of the triple lineage differentiation experiment showed that there was no significant difference in multilineage differentiation potential between the two grous of hUC-MSCs. The results of RT-qPCR showed that the mRNA expression levels of hematopoietic supporting factors SCF, IL-3, CXCL12, VCAM1 and ANGPT1 in hUC-MSCs obtained by explant cultrue method were higher than those obtained by enzyme digestion method.
CONCLUSION
Clinical-grade hUC-MSCs with high expression levels of hematopoietic supporting factors were successfully cultured in an animal serum-free culture system.
Humans
;
Mesenchymal Stem Cells/metabolism*
;
Umbilical Cord/cytology*
;
Cell Differentiation
;
Female
;
Cell Proliferation
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Angiopoietin-1/metabolism*
;
Vascular Cell Adhesion Molecule-1/metabolism*
;
Stem Cell Factor/metabolism*
;
Flow Cytometry
;
Pregnancy
2.Expression and regulatory mechanism of miR-34a in neonatal rat model of bron-chopulmonary dysplasia induced by hyperoxia.
Mengyue HUO ; Hua MEI ; Yuheng ZHANG ; Yanbo ZHANG ; Chunli LIU
Journal of Peking University(Health Sciences) 2025;57(2):237-244
OBJECTIVE:
To investigate the expression and possible regulatory mechanism of miR-34a in the lung tissue of neonatal rat model of bronchopulmonary dysplasia (BPD) induced by hyperoxia.
METHODS:
In the study, 80 newborn SD rats were randomly divided into hyperoxia group (FiO2=60%) and air group (FiO2=21%) within 2 hours after birth, 40 rats per group. Lung tissue samples of the SD rats in each group were extracted on the 1st, 7th, 14th and 21st days after birth, and the pathological changes of lung tissue were observed under light microscope after HE staining. The number of radial alveolar counts (RAC) and the mean alveolar diameter (MAD) and the thickness of alveolar septal thickness (AST) were measured to evaluate the development of alveoli. Real-time fluorescence quantitative PCR was used to detect the expression of miR-34a, angiopoietin-1 (Ang-1) and tyrosine kinase receptor-2 (Tie-2) in lung tissue of rats in hyperoxia group and air group at different time points. Enzyme-linked immunosorbent assay (ELISA) was used to detect the proteins expression of Ang-1 and Tie-2 in the lung tissues of the two groups at different time points.
RESULTS:
The weight of rats in the hyperoxia group on the 7th, 14th and 21st days after birth was significantly lower than that in the air group (P all < 0.05). With the prolongation of oxygen exposure, the number of alveoli decreased, the volume increased, the structure simplified, the alveolar cavity enlarged obviously and the alveolar septum thickened in the hyperoxia group. On the 7th, 14th and 21st days after birth, the RAC in the hyperoxia group was significantly lower than that in the air group (P all < 0.05). Compared with the air group, MAD and AST increased significantly on the 7th, 14th and 21st days after birth in the hyperoxia group, and the difference was statistically significant (P all < 0.05). The expression level of miR-34a in lung tissue of hyperoxia group was significantly higher than that of air group on the 7th, 14th and 21st days after birth, and the difference was statistically significant (P all < 0.05). Compared with the air group at the same time point, the expression levels of Ang-1 and Tie-2 mRNA and protein in the hyperoxia group were lower than those in the air group on the 14th and 21st days after birth (P all < 0.05).
CONCLUSION
The new BPD model of newborn SD rats can be successfully established by continuous exposure to 60% hyperoxia. The expression of miR-34a was up-regulated in the lung tissue of the new BPD model of neonatal rats. MiR-34a may play an important role in the occurrence and development of BPD by regulating Ang-1/Tie-2 signal pathway.
Animals
;
MicroRNAs/metabolism*
;
Bronchopulmonary Dysplasia/genetics*
;
Hyperoxia/metabolism*
;
Rats, Sprague-Dawley
;
Animals, Newborn
;
Rats
;
Angiopoietin-1/genetics*
;
Disease Models, Animal
;
Receptor, TIE-2/genetics*
;
Lung/pathology*
;
Male
3.Advances in the Pathogenesis of Hereditary Angioedema.
Acta Academiae Medicinae Sinicae 2024;46(6):924-931
Hereditary angioedema (HAE) is a rare,unpredictable,autosomal dominant disorder characterized by recurrent swelling in subcutaneous and submucosal tissue.In recent years,the pathophysiology and pathogenesis of HAE have been continuously studied and elucidated.In addition to the genes encoding complement 1 esterase inhibitors,new pathogenic variants have been identified in the genes encoding coagulation factor Ⅻ,plasminogen,angiopoietin-1,kininogen,heparan sulfate 3-O-sulfotransferase 6,and myoferlin in HAE.Moreover,different pathogenic variants have different mechanisms in causing HAE.In addition,the pathogenic genes of some patients remain unknown.This review summarizes the recent progress in the classification,epidemiology,pathophysiology,and pathogenesis of HAE,aiming to provide ideas for further fundamental research,clinical diagnosis,and drug development of HAE.
Humans
;
Angioedemas, Hereditary/diagnosis*
;
Angiopoietin-1/metabolism*
;
Plasminogen/metabolism*
;
Kininogens/metabolism*
;
Complement C1 Inhibitor Protein/metabolism*
4.Danlou Tablet Improves Chronic Intermittent Hypoxia-Induced Dyslipidemia and Arteriosclerosis by HIF-1α-Angptl4 mRNA Signaling Pathway.
Jing-Jing TANG ; Guang-Xi LI ; Zhi-Guo LIU ; Rong YI ; Dong YU ; Yue-Bo ZHANG ; Shuang-Qiao ZHAO ; Shi-Han WANG
Chinese journal of integrative medicine 2022;28(6):509-517
OBJECTIVE:
To detect whether Danlou Tablet (DLT) regulates the hypoxia-induced factor (HIF)-1α-angiopoietin-like 4 (Angptl4) mRNA signaling pathway and explore the role of DLT in treating chronic intermittent hypoxia (CIH)-induced dyslipidemia and arteriosclerosis.
METHODS:
The mature adipocytes were obtained from 3T3-L1 cell culturation and allocated into 8 groups including control groups (Groups 1 and 5, 0.1 mL of cell culture grade water); DLT groups (Groups 2 and 6, 0.1 mL of 1,000 µg/mL DLT submicron powder solution); dimethyloxalylglycine (DMOG) groups (Groups 3 and 7, DMOG and 0.1 mL of cell culture grade water); DMOG plus DLT groups (Groups 4 and 8, DMOG and 0.1 mL of 1,000 µg/mL DLT submicron powder solution). Groups 1-4 used mature adipocytes and groups 5-8 used HIF-1 α-siRNA lentivirus-transfected mature adipocytes. After 24-h treatment, real-time polymerase chain reaction and Western blot were employed to determine the mRNA and protein expression levels of HIF-1 α and Angptl4. In animal experiments, the CIH model in ApoE-/- mice was established. Sixteen mice were complete randomly divided into 4 groups including sham group, CIH model group [intermittent hypoxia and normal saline (2 mL/time) gavage once a day]; Angptl4 Ab group [intermittent hypoxia and Angptl4 antibody (30 mg/kg) intraperitoneally injected every week]; DLT group [intermittent hypoxia and DLT (250 mg/kg) once a day], 4 mice in each group. After 4-week treatment, enzyme linked immunosorbent assay was used to detect the expression levels of serum total cholesterol (TC) and triglyceride (TG). Hematoxylin-eosin and CD68 staining were used to observe the morphological properties of arterial plaques.
RESULTS:
Angptl4 expression was dependent on HIF-1 α, with a reduction in mRNA expression and no response in protein level to DMOG or DLT treatment in relation to siHIF-1 α -transfected cells. DLT inhibited HIF-1 α and Angptl4 mRNA expression (P<0.05 or P<0.01) and reduced HIF-1 α and Angptl4 protein expressions with DMOG in mature adipocytes (all P<0.01), as the effect on HIF-1 α protein also existed in the presence of siHIF-1 α (P<0.01). ApoE-/- mice treated with CIH had increased TG and TC levels (all P<0.01) and atherosclerotic plaque. Angptl4 antibody and DLT both reduce TG and TC levels (all P<0.01), as well as reducing atherosclerotic plaque areas, narrowing arterial wall thickness and alleviating atherosclerotic lesion symptoms to some extent.
CONCLUSION
DLT had positive effects in improving dyslipidemia and arteriosclerosis by inhibiting Angptl4 protein level through HIF-1 α-Angptl4 mRNA signaling pathway.
Angiopoietin-Like Protein 4/genetics*
;
Animals
;
Apolipoproteins E
;
Atherosclerosis/metabolism*
;
Drugs, Chinese Herbal
;
Dyslipidemias/genetics*
;
Hypoxia/metabolism*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Mice
;
Plaque, Atherosclerotic
;
Powders
;
RNA, Messenger/genetics*
;
Signal Transduction
;
Triglycerides
;
Water
5.Combination of stromal vascular fraction and Ad-COMP-Ang1 gene therapy improves long-term therapeutic efficacy for diabetes-induced erectile dysfunction.
Guo-Nan YIN ; Lin WANG ; Xiang-Nan LIN ; Lei SHI ; Zhen-Lin GAO ; Feng-Chan HAN ; Ping LI ; Yin-Chuan JIN ; Jun-Kyu SUH ; Ji-Kan RYU ; Xiong WANG ; Hai-Rong JIN
Asian Journal of Andrology 2018;20(5):465-472
Men with diabetic erectile dysfunction (ED) respond poorly to the currently available oral phosphodiesterase-5 inhibitors. Therefore, functional therapies for diabetic ED are needed. Stromal vascular fraction (SVF) and the adenovirus-mediated cartilage oligomeric matrix angiopoietin-1 (Ad-COMP-Ang1) gene are known to play critical roles in penile erection. We previously reported that SVF and Ad-COMP-Ang1 have only a short-term effect in restoring erectile function. Further improvements to ED therapy are needed for long-lasting effects. In the present study, we aimed to test if the combination of SVF and Ad-COMP-Ang1 could extend the erection effect in diabetic ED. We found that the combination therapy showed a long-term effect in restoring erectile function through enhanced penile endothelial and neural cell regeneration. Combination therapy with SVF and Ad-COMP-Ang1 notably restored cavernous endothelial cell numbers, pericyte numbers, endothelial cell-cell junctions, decreased cavernous endothelial cell permeability, and promoted neural regeneration for at least 4 weeks in diabetic mice. In summary, this is an initial description of the long-term effect of combination therapy with SVF and Ad-COMP-Ang1 in restoring erectile function through a dual effect on endothelial and neural cell regeneration. Such combination therapy may have therapeutic potential for the treatment of diabetic ED.
Angiopoietin-1/genetics*
;
Animals
;
Diabetes Mellitus, Experimental/metabolism*
;
Endothelium, Vascular/metabolism*
;
Erectile Dysfunction/therapy*
;
Genetic Therapy/methods*
;
Intercellular Junctions/metabolism*
;
Male
;
Mesenchymal Stem Cell Transplantation
;
Mice
;
Penile Erection/physiology*
;
Permeability
6.Angiopoietin-1 Modified Human Umbilical Cord Mesenchymal Stem Cell Therapy for Endotoxin-Induced Acute Lung Injury in Rats.
Zhi Wei HUANG ; Ning LIU ; Dong LI ; Hai Yan ZHANG ; Ying WANG ; Yi LIU ; Le Ling ZHANG ; Xiu Li JU
Yonsei Medical Journal 2017;58(1):206-216
PURPOSE: Angiopoietin-1 (Ang1) is a critical factor for vascular stabilization and endothelial survival via inhibition of endothelial permeability and leukocyte- endothelium interactions. Hence, we hypothesized that treatment with umbilical cord mesenchymal stem cells (UCMSCs) carrying the Ang1 gene (UCMSCs-Ang1) might be a potential approach for acute lung injury (ALI) induced by lipopolysaccharide (LPS). MATERIALS AND METHODS: UCMSCs with or without transfection with the human Ang1 gene were delivered intravenously into rats one hour after intra-abdominal instillation of LPS to induce ALI. After the rats were sacrificed at 6 hours, 24 hours, 48 hours, 8 days, and 15 days post-injection of LPS, the serum, the lung tissues, and bronchoalveolar lavage fluid (BALF) were harvested for analysis, respectively. RESULTS: Administration of fluorescence microscope confirmed the increased presence of UCMSCs in the injured lungs. The evaluation of UCMSCs and UCMSCs-Ang1 actions revealed that Ang1 overexpression further decreased the levels of the pro-inflammatory cytokines TNF-α, TGF-β1, and IL-6 and increased the expression of the anti-inflammatory cytokine IL-10 in the injured lungs. This synergy caused a substantial decrease in lung airspace inflammation and vascular leakage, characterized by significant reductions in wet/dry ratio, differential neutrophil counts, myeloperoxidase activity, and BALF. The rats treated by UCMSCs-Ang1 showed improved survival and lower ALI scores. CONCLUSION: UCMSCs-Ang1 could improve both systemic inflammation and alveolar permeability in ALI. UC-derived MSCs-based Ang1 gene therapy may be developed as a potential novel strategy for the treatment of ALI.
Acute Lung Injury/chemically induced/*therapy
;
Angiopoietin-1/*genetics
;
Animals
;
Bronchoalveolar Lavage Fluid
;
Cytokines/metabolism
;
Endotoxins
;
Genetic Therapy
;
Interleukin-10/metabolism
;
Interleukin-6/metabolism
;
Leukocyte Count
;
Lipopolysaccharides
;
Lung/metabolism
;
Male
;
*Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells/metabolism
;
Neutrophils/metabolism
;
Rats
;
Transforming Growth Factor beta1/metabolism
;
Tumor Necrosis Factor-alpha/metabolism
;
Umbilical Cord/*cytology
7.New insight in pathogenesis of podocyte disfunction in minimal change disease.
Journal of Zhejiang University. Medical sciences 2016;45(2):214-218
Minimal change disease (MCD) is a common pathological type of nephrotic syndrome. Its main histology is the fusion of podocyte foot process. The pathogenesis of MCD is not clear, but previously it was thought to be related to immune mechanism. In recent years more studies show that podocyte injury is the key link in the pathogenesis of MCD. In MCD mouse model and human kidney tissues, the expressions of podocyte slit membrane protein-nephrin and podocin, skeleton protein-synaptopodin are decreased, and the expression of synaptopodin is correlated with the response to hormone therapy. In addition, newest studies focused on another two potocyte associated proteins, CD80 and Angiopoietin-like-4. CD80, a T cell stimulating molecule, is expressed in potocyte. Kappa B gene sequences can be activated by external microbes, antigens through acting potocytes, which can induce the upregulation of CD80 expression, cytoskeletal protein damage and the glomerular filtration rate changes, resulting in proteinuria. Angiopoietin-like-4 can be expressed in normal potocytes, but over-expression of angiopoietin-like-4 may injure the GBM charge barrier and induce the foot process fusion, leading to MCD. However, further studies on the factors inducing CD80 and Angiopoietin-like-4 expression, and the interaction between glomerular basement membrane and the two proteins are needed. Based on the mechanism of MCD, NF-kappa B inhibitors and sialylation therapy would be a novel non-immune therapy for MCD.
Angiopoietin-like 4 Protein
;
Angiopoietins
;
metabolism
;
Animals
;
B7-1 Antigen
;
metabolism
;
Disease Models, Animal
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
metabolism
;
Kidney
;
pathology
;
Membrane Proteins
;
metabolism
;
Mice
;
Microfilament Proteins
;
metabolism
;
NF-kappa B
;
metabolism
;
Nephrosis, Lipoid
;
pathology
;
Podocytes
;
pathology
8.Angiogenic factors are associated with development of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation.
Di-min NIE ; Qiu-ling WU ; Xia-xia ZHU ; Ran ZHANG ; Peng ZHENG ; Jun FANG ; Yong YOU ; Zhao-dong ZHONG ; Ling-hui XIA ; Mei HONG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):694-699
Acute graft-versus-host disease (aGVHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the mechanisms of aGVHD are not well understood. We aim to investigate the roles of the three angiogenic factors: angiopoietin-1 (Ang-1), Ang-2 and vascular endothelial growth factor (VEGF) in the development of aGVHD. Twenty-one patients who underwent allo-HSCT were included in our study. The dynamic changes of Ang-1, Ang-2 and VEGF were monitored in patients before and after allo-HSCT. In vitro, endothelial cells (ECs) were treated with TNF-β in the presence or absence of Ang-1, and then the Ang-2 level in the cell culture medium and the tubule formation by ECs were evaluated. After allo-HSCT, Ang-1, Ang-2 and VEGF all exhibited significant variation, suggesting these factors might be involved in the endothelial damage in transplantation. Patients with aGVHD had lower Ang-1 level at day 7 but higher Ang-2 level at day 21 than those without aGVHD, implying that Ang-1 may play a protective role in early phase yet Ang-2 is a promotion factor to aGVHD. In vitro, TNF-β promoted the release of Ang-2 by ECs and impaired tubule formation of ECs, which were both weakened by Ang-1, suggesting that Ang-1 may play a protective role in aGVHD by influencing the secretion of Ang-2, consistent with our in vivo tests. It is concluded that monitoring changes of these factors following allo-HSCT might help to identify patients at a high risk for aGVHD.
Acute Disease
;
Adolescent
;
Adult
;
Angiogenesis Inducing Agents
;
immunology
;
metabolism
;
pharmacology
;
Angiopoietin-1
;
genetics
;
immunology
;
pharmacology
;
Angiopoietin-2
;
genetics
;
immunology
;
pharmacology
;
Antineoplastic Agents
;
therapeutic use
;
Female
;
Gene Expression Regulation, Neoplastic
;
Graft vs Host Disease
;
genetics
;
immunology
;
pathology
;
Hematopoietic Stem Cell Transplantation
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
drug effects
;
immunology
;
Humans
;
Leukemia, Myeloid
;
genetics
;
immunology
;
pathology
;
therapy
;
Lymphoma, Non-Hodgkin
;
genetics
;
immunology
;
pathology
;
therapy
;
Male
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
genetics
;
immunology
;
pathology
;
therapy
;
Retrospective Studies
;
Signal Transduction
;
Transplantation, Homologous
;
Tumor Necrosis Factor-alpha
;
pharmacology
;
Vascular Endothelial Growth Factor A
;
genetics
;
immunology
9.Microvascular protective role of pericytes in melatonin-treated spinal cord injury in the C57BL/6 mice.
Yingli JING ; Qingbin WU ; Xiaochen YUAN ; Bingwei LI ; Mingming LIU ; Xiaoyan ZHANG ; Shuying LIU ; Hongwei LI ; Ruijuan XIU
Chinese Medical Journal 2014;127(15):2808-2813
BACKGROUNDPericytes, located on microvessels, help to maintain vascular stability and blood-brain barrier integrity. The influence of pericytes on microvessels after spinal cord injury (SCI) is less clear. Therefore, the aim of this study was to investigate whether pericytes took a protective effect on microvessels in melatonin-treated SCI.
METHODSC57BL/6 mice were randomly divided into three groups: sham group, SCI group, and melatonin group (n = 27 per group). Functional recovery was evaluated using the Basso Mouse Scale. Motor neurons were observed using hematoxylin and eosin staining. Pericyte coverage was analyzed using immunofluorescence. Permeability of blood-spinal cord barrier (BSCB) was assessed by administration of Evan's Blue. Protein levels of occludin, aquaporin-4 (AQP4), angiopoietin-1 (Ang1), intercellular cell adhesion molecule-1 (ICAM-1), Bcl-2, and Bax were determined using Western blotting. Mimicking the pathological conditions of SCI, melatonin-treated primary pericytes were subjected to oxygen-glucose deprivation/reperfusion (OGD/R). Secretion of Ang1 was analyzed using an enzyme-linked immunosorbent assay, and the expression of ICAM-1 was detected by immunofluorescence.
RESULTSMelatonin treatment improved locomotor functional outcome and rescued motor neurons. Pericyte coverage was significantly reduced after SCI; melatonin treatment alleviated the loss of pericyte coverage and rescued perfused microvessels 7 days after injury. The permeability of BSCB and loss of occludin were attenuated, and edema formation and upregulation of AQP4 were inhibited, after melatonin treatment. The expression of Ang1 and Bcl-2 was improved, while the expression of ICAM-1 and Bax was inhibited, in melatonin-treated SCI mice. Furthermore, the secretion of Ang1 was increased and the expression of ICAM-1 was inhibited in melatonin-treated pericytes after OGD/R.
CONCLUSIONSMelatonin ameliorated the loss of blood vessels and disruption of BSCB to exert a protective effect on SCI, which might be mediated by increased pericyte coverage. The upregulation of Ang1 in pericytes could inhibit inflammation and apoptosis to protect the microvessels.
Angiopoietin-1 ; metabolism ; Animals ; Enzyme-Linked Immunosorbent Assay ; Intercellular Adhesion Molecule-1 ; metabolism ; Male ; Melatonin ; pharmacology ; therapeutic use ; Mice ; Mice, Inbred C57BL ; Microvessels ; cytology ; Occludin ; metabolism ; Pericytes ; drug effects ; metabolism ; Random Allocation ; Spinal Cord Injuries ; drug therapy ; metabolism
10.Effects of adenovirus-delivered angiopoietin-1 siRNA on expression of matrix metalloproteinases in rats with acute lung injury induced by phosgene.
Daikun HE ; Yiru SHAO ; Jie SHEN ; Lin ZHANG ; Jing WANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(9):653-659
OBJECTIVETo investigate the effects of adenovirus-delivered angiopoietin-1 siRNA (Ad. Ang-1siRNA) on the expression of matrix metalloproteinase-2, 9 (MMP-2, 9) and tissue inhibitor of metallopro-teinase-1 (TIMP-1) in rats with acute lung injury (ALI) induced by phosgene (Psg).
METHODSWe first established a rat model of Psg-induced acute lung injury (ALI). The rats were randomly divided into 6 groups: air control group with exposure to air, air+adenovirus (air+Ad) group with caudal vein injection of 1×10(8) pfu/ml adenovirus 1 h after air exposure, air+Ad/Ang1 group with caudal vein injection of 1×10(8) pfu/ml Ad.Ang-1siRNA 1 h after air exposure, Psg group with exposure to 8.33 mg/L Psg (purity 100%, of the same volume as the inhaled air in the air control group) for 5 min, Psg+Ad group with caudal vein injection of 1×10(8) pfu/ml adenovirus 1 h after exposure to the same dose of Psg, and Psg+Ad/Ang1 group with caudal vein injection of 1×10(8) pfu/ml Ad.Ang-1siRNA 1 h after exposure to the same dose of Psg. Serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected 36 h after exposure. The protein expression of Ang-1, MMP-2, 9, and TIMP-1 in serum and BALF was determined by double-antibody sandwich ELISA. RT-PCR was used to determine the mRNA levels of Ang-1, MMP-2, 9, and TIMP-1 in lung tissue. The protein expression of MMP-2, 9 and TIMP-1 in lung tissue was determined by Western blot.
RESULTSA rat model of Psg-induced ALI was successfully established. The levels of MMP-2, 9 in serum, BALF, and lung tissue were significantly increased in the Psg group and Psg+Ad/Ang1 group as compared with the control group (P<0.01); no significant change was observed in serum TIMP-1 protein expression (P>0.05); interestingly, TIMP-1 protein expression in BALF and lung tissue was significantly increased (P<0.01). Compared with the Psg group, the Psg+Ad/Ang1 group showed a significant decrease in MMP-2, 9 expression in BALF, serum, and lung tissue (P<0.05), but no significant change in protein expression of TIMP-1 was discovered (P>0.05).
CONCLUSIONAd.Ang-1siRNA has a potential beneficial effect in rats with Psg-induced ALI through inhibition of MMP-2, 9 expression, but has no significant effect on the expression of TIMP-1.
Acute Lung Injury ; chemically induced ; metabolism ; Adenoviridae ; genetics ; Angiopoietin-1 ; physiology ; Animals ; Bronchoalveolar Lavage Fluid ; Chemical Warfare Agents ; toxicity ; Disease Models, Animal ; Lung ; metabolism ; Matrix Metalloproteinase 2 ; genetics ; Matrix Metalloproteinases ; metabolism ; Phosgene ; toxicity ; RNA, Messenger ; genetics ; RNA, Small Interfering ; Rats ; Tissue Inhibitor of Metalloproteinase-1 ; metabolism

Result Analysis
Print
Save
E-mail