1.Activation of astrocytes in the dorsomedial hypothalamus accelerates sevoflurane anesthesia emergence in mice.
Shuting GUO ; Fuyang CAO ; Yongxin GUO ; Yanxiang LI ; Xinyu HAO ; Zhuoning ZHANG ; Zhikang ZHOU ; Li TONG ; Jiangbei CAO
Journal of Southern Medical University 2025;45(4):751-759
OBJECTIVES:
To investigate the regulatory role of astrocytes in the dorsomedial hypothalamus (DMH) during sevoflurane anesthesia emergence.
METHODS:
Forty-two male C57BL/6 mice were randomized into 6 groups (n=7) for assessing astrocyte activation in the dorsomedial hypothalamus (DMH) under sevoflurane anesthesia. Two groups of mice received microinjection of agfaABC1D promoter-driven AAV2 vector into the DMH for GCaMP6 overexpression, and the changes in astrocyte activity during sevoflurane or air inhalation were recorded using calcium imaging. For assessing optogenetic activation of astrocytes, another two groups of mice received microinjection of an optogenetic virus or a control vector into the DMH with optic fiber implantation, and sevoflurane anesthesia emergence was compared using behavioral experiments. In the remaining two groups, electroencephalogram (EEG) recording during sevoflurane anesthesia emergence was conducted after injection of the hChR2-expressing and control vectors. Anesthesia induction and recovery were assessed by observing the righting reflex. EEG data were recorded under 2.0% sevoflurane to calculate the burst suppression ratio (BSR) and under 1.5% sevoflurane for power spectrum analysis. Immunofluorescence staining was performed to visualize the colocalization of GFAP-positive astrocytes with viral protein signals.
RESULTS:
Astrocyte activity in the DMH decreased progressively as sevoflurane concentration increased. During 2.0% sevoflurane anesthesia, the mice injected with the ChR2-expressing virus exhibited a significantly shortened wake-up time (P<0.05), and optogenetic activation of the DMH astrocytes led to a marked reduction in BSR (P<0.001). Under 1.5% sevoflurane anesthesia, optogenetic activation resulted in a significant increase in EEG gamma power and a significant decrease in delta power in ChR2 group (P<0.01).
CONCLUSIONS
Optogenetic activation of DMH astrocytes facilitates sevoflurane anesthesia emergence but does not significantly influence anesthesia induction. These findings offer new insights into the mechanisms underlying anesthesia emergence and may provide a potential target for accelerating postoperative recovery and managing anesthesia-related complications.
Animals
;
Astrocytes/physiology*
;
Sevoflurane
;
Mice, Inbred C57BL
;
Mice
;
Male
;
Electroencephalography
;
Anesthetics, Inhalation/pharmacology*
;
Hypothalamus/cytology*
;
Anesthesia Recovery Period
;
Methyl Ethers/pharmacology*
2.The Role of Intravenous Anesthetics for Neuro: Protection or Toxicity?
Kaixin WANG ; Yafeng WANG ; Tianhao ZHANG ; Bingcheng CHANG ; Daan FU ; Xiangdong CHEN
Neuroscience Bulletin 2025;41(1):107-130
The primary intravenous anesthetics employed in clinical practice encompass dexmedetomidine (Dex), propofol, ketamine, etomidate, midazolam, and remimazolam. Apart from their established sedative, analgesic, and anxiolytic properties, an increasing body of research has uncovered neuroprotective effects of intravenous anesthetics in various animal and cellular models, as well as in clinical studies. However, there also exists conflicting evidence pointing to the potential neurotoxic effects of these intravenous anesthetics. The role of intravenous anesthetics for neuro on both sides of protection or toxicity has been rarely summarized. Considering the mentioned above, this work aims to offer a comprehensive understanding of the underlying mechanisms involved both in the central nerve system (CNS) and the peripheral nerve system (PNS) and provide valuable insights into the potential safety and risk associated with the clinical use of intravenous anesthetics.
Animals
;
Humans
;
Anesthetics, Intravenous/adverse effects*
;
Neuroprotective Agents/pharmacology*
;
Propofol
;
Neurotoxicity Syndromes/prevention & control*
;
Central Nervous System/drug effects*
;
Dexmedetomidine
3.Microglial EPOR Contribute to Sevoflurane-induced Developmental Fine Motor Deficits Through Synaptic Pruning in Mice.
Danyi HE ; Xiaotong SHI ; Lirong LIANG ; Youyi ZHAO ; Sanxing MA ; Shuhui CAO ; Bing LIU ; Zhenzhen GAO ; Xiao ZHANG ; Ze FAN ; Fang KUANG ; Hui ZHANG
Neuroscience Bulletin 2024;40(12):1858-1874
Clinical researches including the Mayo Anesthesia Safety in Kids (MASK) study have found that children undergoing multiple anesthesia may have a higher risk of fine motor control difficulties. However, the underlying mechanisms remain elusive. Here, we report that erythropoietin receptor (EPOR), a microglial receptor associated with phagocytic activity, was significantly downregulated in the medial prefrontal cortex of young mice after multiple sevoflurane anesthesia exposure. Importantly, we found that the inhibited erythropoietin (EPO)/EPOR signaling axis led to microglial polarization, excessive excitatory synaptic pruning, and abnormal fine motor control skills in mice with multiple anesthesia exposure, and those above-mentioned situations were fully reversed by supplementing EPO-derived peptide ARA290 by intraperitoneal injection. Together, the microglial EPOR was identified as a key mediator regulating early synaptic development in this study, which impacted sevoflurane-induced fine motor dysfunction. Moreover, ARA290 might serve as a new treatment against neurotoxicity induced by general anesthesia in clinical practice by targeting the EPO/EPOR signaling pathway.
Animals
;
Sevoflurane/toxicity*
;
Microglia/drug effects*
;
Anesthetics, Inhalation/adverse effects*
;
Mice
;
Mice, Inbred C57BL
;
Receptors, Erythropoietin/metabolism*
;
Neuronal Plasticity/drug effects*
;
Male
;
Prefrontal Cortex/drug effects*
;
Erythropoietin/pharmacology*
;
Signal Transduction/drug effects*
4.Acupoint Injection Decreases Anesthetic Cosumption during Combined Spinal-Epidural and Patient-Controlled Epidural Labor Analgesia.
Min-Li HUANG ; Chang-Ping FANG ; Hai-Yan ZHAO ; Zi-Jing ZHANG ; Shu-Zhen WU ; Wei YI ; Shang-Rong LI ; Ling-Ling WU
Chinese journal of integrative medicine 2022;28(3):257-262
OBJECTIVE:
To explore if acupoint injection can improve analgesic effects or delivery outcomes in parturients who received combined spinal-epidural analgesia (CSEA) and patient-controlled epidural analgesia (PCEA) for labor analgesia.
METHODS:
A total of 307 participants were prospectively collected from July 2017 to December 2019. The participants were randomized into the combined acupoint injection with CSEA plus PCEA group (AICP group, n=168) and CSEA plus PCEA group (CP group, n=139) for labor analgesia using a random number table. Both groups received CSEA plus PCEA at cervical dilation 3 cm during labor process, and parturients of the AICP group were implemented acupoint injection for which bilateral acupoint of Zusanli (ST 36) and Sanyinjiao (SP 6) were selected in addition. The primary outcome was Visual Analogue Scale (VAS) score, and the secondary outcomes were obstetric outcomes and requirement of anesthetics doses. Safety evaluations were performed after intervention.
RESULTS:
The VAS scores were significantly lower in the AICP group than in the CP group at 10, 30, 60, and 120 min after labor analgesia (all P<0.05). The latent phase of the AICP group was shorter than that of the CP group (P<0.05). There were less additional anesthetics consumption, lower incidences of uterine atony, fever, pruritus and urinary retention in the AICP group than those in the CP group (all P<0.05).
CONCLUSION
Acupoint injection combined CSEA plus PCEA for labor analgesia can decrease the anesthetic consumption, improve analgesic quality, and reduce adverse reactions in the parturients. (Registration No. ChiMCTR-2000003120).
Acupuncture Points
;
Analgesia, Obstetrical/adverse effects*
;
Analgesia, Patient-Controlled/adverse effects*
;
Anesthetics/pharmacology*
;
Female
;
Humans
;
Labor, Obstetric
;
Pregnancy
5."High" on Muscle Spray - Ethyl Chloride Abuse.
Annals of the Academy of Medicine, Singapore 2019;48(2):67-68
Anesthetics, Local
;
chemistry
;
pharmacology
;
toxicity
;
Central Nervous System
;
drug effects
;
Ethyl Chloride
;
chemistry
;
pharmacology
;
toxicity
;
Humans
;
Inhalation
;
Male
;
Medical History Taking
;
Neurologic Examination
;
Patient Care Management
;
methods
;
Psychotropic Drugs
;
chemistry
;
pharmacology
;
toxicity
;
Substance-Related Disorders
;
etiology
;
physiopathology
;
psychology
;
therapy
;
Treatment Outcome
;
Volatilization
;
Young Adult
7.Impact of inhaled anesthetics on the male reproductive system and its mechanisms: An update.
Hai-Yan ZHOU ; Xian-Gang MO ; Xiao-Hua ZOU ; Bai-Long HU
National Journal of Andrology 2018;24(3):272-276
The safety of occupational exposure to inhaled anesthetics remains a concern among the medical staff in hospitals. Few reports are seen about the impact of inhaled anesthetics on the reproductive system, particularly that of males. Several clinical and basic studies on isoflurane and others suggest that inhaled anesthetics affect the reproductive system of rodents by decreasing the sperm count, inducing sperm morphological abnormality, reducing sperm motility, and changing the levels of reproductive hormones, the underlying mechanisms of which are mainly associated with the alteration of the hypothalamic-pituitary-gonadal axis and DNA damage and apoptosis of reproductive cells. This article reviews the main impacts of inhaled anesthetics on the male reproductive system and the possible mechanisms.
Anesthetics, Inhalation
;
pharmacology
;
Apoptosis
;
DNA Damage
;
Genitalia, Male
;
drug effects
;
Humans
;
Isoflurane
;
pharmacology
;
Male
;
Occupational Exposure
;
Sperm Count
;
Sperm Motility
;
drug effects
;
Spermatozoa
;
drug effects
8.Regulatory Effect of General Anesthetics on Activity of Potassium Channels.
Yan LI ; Jie XU ; Yun XU ; Xiao-Yun ZHAO ; Ye LIU ; Jie WANG ; Guang-Ming WANG ; Yan-Tian LV ; Qiong-Yao TANG ; Zhe ZHANG
Neuroscience Bulletin 2018;34(5):887-900
General anesthesia is an unconscious state induced by anesthetics for surgery. The molecular targets and cellular mechanisms of general anesthetics in the mammalian nervous system have been investigated during past decades. In recent years, K channels have been identified as important targets of both volatile and intravenous anesthetics. This review covers achievements that have been made both on the regulatory effect of general anesthetics on the activity of K channels and their underlying mechanisms. Advances in research on the modulation of K channels by general anesthetics are summarized and categorized according to four large K channel families based on their amino-acid sequence homology. In addition, research achievements on the roles of K channels in general anesthesia in vivo, especially with regard to studies using mice with K channel knockout, are particularly emphasized.
Anesthetics, General
;
pharmacology
;
therapeutic use
;
Animals
;
Humans
;
Potassium Channels
;
metabolism
9.Effect of dexmedetomidine on supraclavicular brachial plexus block: a randomized double blind prospective study.
Yan LI ; Hui WANG ; Ying DENG ; Yao YAO ; Min LI
Journal of Peking University(Health Sciences) 2018;50(5):845-849
OBJECTIVE:
To evaluate the effect of dexmedetomidine combined with ropivacaine on brachial plexus block in patients scheduled for elective shoulder arthroscopy.
METHODS:
Ninety patients with American Society of Anesthesiologists (ASA) I or II, scheduled for elective shoulder arthroscopy, were randomly divided into three groups. In group R (n=30), the patients were given 10 mL of 0.375% ropivacaine in branchial plexus block (interscalene approach guided by ultrasound), in group D1 (n=30), the patients were given 10 mL of 0.375% ropivacaine (interscalene approach guided by ultrasound) + dexmedetomidine 0.2 μg/(kg×h) (intravenous pump infusion), and in group D2 (n=30), the patients were given 10 mL of 0.375% ropivacaine (interscalene approach guided by ultrasound) + dexedetomidine 0.7 μg/(kg×h) (intravenous pump infusion). To evaluate the effect of brachial plexus block before general anesthesia. Group D1 and group D2 were given dexmedetomidine intravenously for 1.0 μg/kg during 10 min, then the drug was pumped by 0.2 μg/(kg×h) and 0.7 μg/(kg×h) respectively until 30 min before the operation finished. Changes in systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), and before anesthesia (T0), 10 min (T1), 30 min (T2) after giving dexmedetomidine, discontinue medication (T3), after operation (T4), and extubation (T5) were investigated. Motor and sensory block onset times, block durations, and duration of analgesia were recorded. The scores of pain after operation and the adverse effects of shiver, hypopiesia, drowsiness, and blood loss were recorded during operation.
RESULTS:
Compared with group R, the duration of analgesia and duration of sensory block in group D1 and group D2 were significant longer (P<0.01), there was no significant difference between groups D1 and D2 (P>0.05). Compared with group R, at each time point of T1-T5, the heart rate and systolic blood pressure in group D1 and group D2 were significantly decreased (P<0.01). Compared with D1 group, the incidence of hypotension and bradycardia in group D2 were significantly different (P<0.05).
CONCLUSION
Intravenous dexmedetomidine could prolong the duration of analgesia time and sensory block within the brachial plexus block, inhibiting the stress response during arthroscopic shoulder surgery. Compared with high-dose, low-dose can provide safer and better clinical effect and reduce the adverse effects of dexmedetomidine.
Analgesics, Non-Narcotic
;
Anesthetics, Local/therapeutic use*
;
Arthroscopy
;
Brachial Plexus
;
Brachial Plexus Block
;
Dexmedetomidine/therapeutic use*
;
Double-Blind Method
;
Humans
;
Hypnotics and Sedatives/pharmacology*
;
Prospective Studies
;
Ropivacaine/therapeutic use*
;
Shoulder Joint/surgery*
10.Ginsenoside Rb1 Attenuates Isoflurane/surgery-induced Cognitive Dysfunction via Inhibiting Neuroinflammation and Oxidative Stress.
Hui Hui MIAO ; Ye ZHANG ; Guan Nan DING ; Fang Xiao HONG ; Peng DONG ; Ming TIAN
Biomedical and Environmental Sciences 2017;30(5):363-372
OBJECTIVEAnesthetic isoflurane plus surgery has been reported to induce cognitive impairment. The underlying mechanism and targeted intervention remain largely to be determined. Ginsenoside Rb1 was reported to be neuroprotective. We therefore set out to determine whether ginsenoside Rb1 can attenuate isoflurane/surgery-induced cognitive dysfunction via inhibiting neuroinflammation and oxidative stress.
METHODSFive-months-old C57BL/6J female mice were treated with 1.4% isoflurane plus abdominal surgery for two hours. Sixty mg/kg ginsenoside Rb1 were given intraperitoneally from 7 days before surgery. Cognition of the mice were assessed by Barnes Maze. Levels of postsynaptic density-95 and synaptophysin in mice hippocampus were measured by Western blot. Levels of reactive oxygen species, tumor necrosis factor-α and interleukin-6 in mice hippocampus were measured by ELISA.
RESULTSHere we show for the first time that the ginsenoside Rb1 treatment attenuated the isoflurane/surgery-induced cognitive impairment. Moreover, ginsenoside Rb1 attenuated the isoflurane/surgery-induced synapse dysfunction. Finally, ginsenoside Rb1 mitigated the isoflurane/surgery-induced elevation levels of reactive oxygen species, tumor necrosis factor-α and interleukin-6 in the mice hippocampus.
CONCLUSIONThese results suggest that ginsenoside Rb1 may attenuate the isoflurane/surgery-induced cognitive impairment by inhibiting neuroinflammation and oxidative stress pending future studies.
Anesthetics, Inhalation ; adverse effects ; Animals ; Cognition ; Cognitive Dysfunction ; etiology ; prevention & control ; Female ; Ginsenosides ; pharmacology ; Hippocampus ; drug effects ; Inflammation ; etiology ; prevention & control ; Isoflurane ; adverse effects ; Medicine, Chinese Traditional ; Mice ; Mice, Inbred C57BL ; Oxidative Stress ; Postoperative Complications ; etiology ; prevention & control ; Random Allocation ; Surgical Procedures, Operative ; adverse effects ; Synapses ; metabolism

Result Analysis
Print
Save
E-mail