1.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
2.Mechanisms of Shenqi Wenfei Prescription in Intervening in Chronic Obstructive Pulmonary Disease in Rats Based on ROS/TXNIP/NLRP3 Signaling Pathway
Di WU ; Mengyao SHI ; Lu ZHANG ; Tong LIU ; Jiabing TONG ; Cheng YANG ; Zegeng LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):78-87
ObjectiveTo investigate the effects and underlying mechanisms of Shenqi Wenfei prescription (SQWF) on chronic obstructive pulmonary disease (COPD). MethodsA rat model of COPD with lung Qi deficiency was established using lipopolysaccharide (LPS) combined with cigarette smoke. Forty-eight SD rats were randomly divided into a blank group, a model group, low-, medium-, and high-dose SQWF groups (2.835, 5.67, 11.34 g·kg-1), and a Yupingfeng group (1.35 g·kg-1). Drug administration began on day 29 after modeling and continued for 2 weeks. The general condition of the rats was observed, and the lung function in each group was assessed. Hematoxylin-eosin (HE) staining was used to observe pathological changes in lung tissue. The proportion of inflammatory cells in bronchoalveolar lavage fluid (BALF) was measured. Apoptosis in lung tissue was examined by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. The release level of lactate dehydrogenase (LDH) in BALF was detected by a microplate assay. Reactive oxygen species (ROS) levels in lung tissue were detected using fluorescent probes. The levels of malondialdehyde (MDA), total superoxide dismutase (SOD), and reduced glutathione (GSH) in BALF were measured by biochemical methods. Ultrastructural changes in lung cells were observed via transmission electron microscopy. Double immunofluorescence staining was performed to detect the expression of thioredoxin-interacting protein (TXNIP) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in lung tissue. Western blot analysis was used to detect the protein expression of TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), cysteinyl aspartate-specific protease-1 (Caspase-1), Caspase-1 p20, gasdermin D (GSDMD), GSDMD N-terminal active fragment (GSDMD-N), interleukin-1β (IL-1β), and IL-18 in lung tissue. Serum IL-1β and IL-18 levels were measured by ELISA. ResultsCompared with the blank group, the model group showed lassitude, fatigue, tachypnea, and audible phlegm sounds, and lung function significantly declined (P0.01). Pulmonary emphysema and inflammatory cell infiltration were obvious. The level of inflammatory cells in BALF increased significantly (P0.05). The number of TUNEL-positive cells increased (P0.01). Levels of LDH, ROS, and MDA in BALF increased significantly (P0.01), while GSH and SOD activities decreased significantly (P0.01). Lung tissue cells showed irregular morphology, swollen mitochondria, disrupted cell membranes, and abundant vesicles, i.e., pyroptotic bodies. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue were significantly elevated (P0.01), and serum IL-1β and IL-18 levels also increased significantly (P0.01). Compared with the model group, each medication group showed alleviation of qi deficiency symptoms and improved lung function (P0.01). Pulmonary emphysema and inflammatory cell infiltration were reduced. Inflammatory cell levels decreased (P0.05). The number of TUNEL-positive cells decreased significantly (P0.01). Levels of LDH, ROS, and MDA decreased significantly (P0.05), while GSH and SOD activities significantly increased (P0.01). Morphological and structural damage in lung tissue was improved to varying degrees. Protein levels of TXNIP, NLRP3, ASC, Caspase-1, Caspase-1 p20, GSDMD, GSDMD-N, IL-1β, and IL-18 in lung tissue significantly decreased (P0.01), and serum IL-1β and IL-18 levels also decreased significantly (P0.05). ConclusionSQWF can improve lung function and alleviate inflammatory responses in COPD rats. Its mechanism may be related to regulating the ROS/TXNIP/NLRP3 pathway and inhibiting pyroptosis.
3.Study on the protective effect of saikosaponin C on acute liver injury in mice based on metabolomics
Xincun LI ; Donghui PENG ; Yongfu WANG ; Yamin SHI ; Mengjuan WU ; Zhihui FU ; Juan WANG
China Pharmacy 2025;36(5):552-557
OBJECTIVE To investigate the protective effect and mechanism of saikosaponin C (SSC) on acute liver injury (ALI) in mice induced by carbon tetrachloride (CCl4) based on serum metabolomics. METHODS Forty mice were divided into blank group (water), model group (water), positive control drug group (Biphenyl diester drop pills, 150 mg/kg), and SSC low- and high-dose groups (2.5, 10 mg/kg) using the random number table method, with 8 mice in each group. They were given water/ relevant drugs, once a day, for 7 consecutive days. One hour after the last administration, all mice were intraperitoneally injected with 0.2% CCl4 olive oil to induce ALI model, except for the blank group. After 17 hours of the modeling, the liver index of mice was calculated. The levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β in serum of mice were detected. The histopathological changes of liver tissue were observed. Meanwhile, the serum metabolomics of mice were analyzed by liquid chromatography-mass spectrometry. RESULTS Compared with the blank group, the levels of liver index, ALT, AST, LDH, TNF-α, IL-6, and IL-1β in the model group were significantly increased (P<0.01). Hepatocytes were edema, vacuolar degeneration, more necrosis, and a large number of inflammatory cells were infiltrated. Compared with the model group, liver index and serum index levels of mice were significantly decreased (P<0.05 or P<0.01), accompanied by marked improvement in histopathological damage to the liver tissue. The metabolomics results showed that compared with the model group, there were 63 up-regulated and 256 down-regulated differential metabolites in the serum of mice in the SSC high-dose group, including prostaglandin B2, 20-hydroxy-leukotriene B4, 5- hydroxy-L-tryptophan, 7α -hydroxycholesterol, etc.; these metabolites were primarily involved in metabolic pathways such as arachidonic acid metabolism, 5-hydroxytryptamine synapse, primary bile acid biosynthesis. CONCLUSIONS SSC exerts a protective effect against CCl4-induced ALI by down-regulating the level of key metabolites such as prostaglandin B2 and 20-hydroxy-leukotriene B4, and then ruducing metabolic pathways such as arachidonic acid metabolism, 5- hydroxytryptamine synapse, and primary bile acid biosynthesis.
4.Weighted gene co-expression network analysis and machine learning identification of key genes in rheumatoid arthritis synovium
Yingkai WU ; Gaolong SHI ; Zonggang XIE
Chinese Journal of Tissue Engineering Research 2025;29(2):294-301
BACKGROUND:Rheumatoid arthritis is a condition that affects the entire immune system in the body and is known for causing inflammatory hyperplasia in the joints and destruction of articular cartilage.The pathogenesis of rheumatoid arthritis is still unclear;therefore,there is an urgent need to discover new highly sensitive and specific diagnostic biomarkers. OBJECTIVE:To identify and screen key genes in the synovium of rheumatoid arthritis patients using bioinformatics techniques and machine learning algorithms and to construct and validate a rheumatoid arthritis prediction model. METHODS:Three datasets containing synovial tissue samples from rheumatoid arthritis patients(GSE77298,GSE55235,GSE55457)were downloaded from the Gene Expression Omnibus(GEO)database.GSE77298 and GSE55235 were used as the training set,while GSE55457 served as the test set,with a total of 66 samples,including 39 samples from rheumatoid arthritis patients and 27 normal synovial samples.Differentially expressed genes in the training set were selected using R language,and then the weighted gene co-expression network analysis was used to modularize the genes in the training set.The most relevant module was selected,and feature genes within this module were identified.Differentially expressed genes and the feature genes from the module were intersected for the subsequent machine learning analysis.Three machine learning methods,namely the least absolute shrinkage and selection operator algorithm,support vector machine with recursive feature elimination,and random forest algorithm,were employed to further analyze the intersected genes and identify the hub genes.The hub genes obtained from these three machine learning algorithms were intersected again to obtain the key genes in the synovium of rheumatoid arthritis.A predictive rheumatoid arthritis model was constructed using these key genes as variables,and the risk of developing rheumatoid arthritis in patients was inferred based on the model.The receiver operating characteristic curve was used to determine the diagnostic value of the rheumatoid arthritis prediction model and its key genes. RESULTS AND CONCLUSION:Through the differential analysis,a total of 730 differentially expressed genes were identified in the training set,and 185 feature genes were identified in the weighted gene co-expression network analysis feature modules.There were 159 intersected genes obtained.There were 4 hub genes identified by the least absolute shrinkage and selection operator algorithm,11 hub genes by the support vector machine with recursive feature elimination algorithm,and 5 hub genes by the random forest algorithm.After intersection,2 key genes(TNS3 and SDC1)were obtained.Based on the two key genes,a nomogram model was constructed in the training and test sets,with good fit between the calibration prediction curve and the standard curve,and good clinical efficacy in predicting the onset of rheumatoid arthritis.These findings indicate that TNS3 and SDC1,obtained based on bioinformatics and machine learning algorithms,may become key targets for the diagnosis and treatment of rheumatoid arthritis.
5.Wen-Shen-Tong-Du Decoction promoting spinal cord injury repair in mice
Ruihua ZHAO ; Sixian CHEN ; Yang GUO ; Lei SHI ; Chengjie WU ; Mao WU ; Guanglu YANG ; Haoheng ZHANG ; Yong MA
Chinese Journal of Tissue Engineering Research 2025;29(6):1118-1126
BACKGROUND:Previous studies have confirmed that Wen-Shen-Tong-Du Decoction can promote the recovery of spinal cord injury by inhibiting pyroptosis of splenic B cells,promoting the phagocytosis of myelin debris by microvascular endothelial cells,affecting the migration and infiltration of microglia,promoting the recovery of damaged neurons,and decreasing neuronal apoptosis after spinal cord injury,but the mechanism of this is still not clear. OBJECTIVE:To investigate the effect of Wen-Shen-Tong-Du Decoction on the triggering receptor expressed on myeloid cells 2(TREM2)and PI3K/Akt signaling pathways in mice following spinal cord injury. METHODS:Thirty-six C57BL/6 mice were selected and randomly divided into a sham-operation group,a model group and a Wen-Shen-Tong-Du Decoction group,with 12 mice in each group.In the model and Wen-Shen-Tong-Du Decoction groups,mouse models of T10 spinal cord injury were prepared by the modified Allen's method.On the 1st day after modeling,the Wen-Shen-Tong-Du Decoction group was given Wen-Shen-Tong-Du Decoction by gavage,and the sham-operation group and the model group were given saline by gavage once a day for 28 days.During the drug administration period,mouse motor function was evaluated by Basso Mouse Scale score and inclined plane test.On the 7th and 28th days after modeling,hematoxylin-eosin staining was used to observe the histopathological changes in the spinal cord tissue of the mice;immunofluorescence double staining was used to detect the protein expression of ionized calcium binding adaptor molecule 1(IBA1)and TREM2;and western blot assay was used to detect the expression of TREM2,PI3K,p-PI3K,Akt,p-Akt,Bcl2,Bax and Caspase3 in spinal cord tissue. RESULTS AND CONCLUSION:Basso Mouse Scale scores and inclined plane test results indicated that the motor function of the mouse hindlimbs was declined after spinal cord injury,and Wen-Shen-Tong-Du Decoction significantly improved motor function in mice with spinal cord injury.Hematoxylin-eosin staining results revealed that Wen-Shen-Tong-Du Decoction significantly ameliorated the pathological structure of spinal cord tissue compared with the model group,manifesting as reduced degrees of dorsal white matter and neuronal atrophy,decreased cytoplasmic vacuolization,and reduced inflammatory cell infiltration.Immunofluorescence double staining results showed that on the 7th day after modeling,the protein expression of IBA1 and TREM2 in the model group was lower than that in the sham-operation group(P<0.05),and the protein expression of IBA1 and TREM2 in the Wen-Shen-Tong-Du Decoction group was higher than that in the model group(P<0.05);on the 28th day after modeling,the protein expression of TREM2 in the model group was lower than that in the sham-operation group(P<0.05),and the protein expression of TREM2 in the spinal cord tissue of the mice in the Wen-Shen-Tong-Du Decoction group was higher than that in the model group(P<0.05).Western blot results analysis demonstrated that on the 7th day after modeling,compared with the sham-operation group,the model group exhibited a significant reduction in TREM2,PI3K,and Bcl2/Bax(P<0.05),as well as a significant increase in p-Akt,Bax and p-Akt/Aktp-PI3K(P<0.05);compared with the model group,the Wen-Shen-Tong-Du Decoction group showed a significant increase in TREM2,PI3K,p-PI3K,Akt,p-Akt,Bcl2,p-PI3K/PI3K,p-Akt/Ak,and Bcl2/Bax(P<0.05),as well as a significant decrease in Bax and Caspase3 protein expression(P<0.05).On the 28th day after modeling,compared with the sham-operation group,the model group exhibited a significant reduction in TREM2,PI3K,p-PI3K,Akt,p-Akt,Bcl2 and Bcl2/Bax(P<0.05),as well as a significant increase in Bax protein expression(P<0.05);compared with the model group,the Wen-Shen-Tong-Du Decoction group showed a significant increase in TREM2,PI3K,Akt,p-Akt,Bcl2,and Bcl2/Bax(P<0.05),as well as a significant decrease in Bax protein expression(P<0.05).To conclude,Wen-Shen-Tong-Du Decoction may activate the PI3K/Akt signaling pathway by up-regulating the expression of TREM2 protein in microglia,and then inhibit neuronal apoptosis,thus exerting neuroprotective effects and promoting the repair of spinal cord injury.
6.Mechanism of Piezo-type mechanosensitive ion channel component 1 in rat pressure injury
Jiaqi SUN ; Lu BIAN ; Wentao SHI ; Xuechao WU ; Xiaojie LU
Chinese Journal of Tissue Engineering Research 2025;29(8):1578-1584
BACKGROUND:The mechanisms underlying the occurrence of pressure injuries are complex,and it is not entirely clear which factors play a central role in the development of pressure injuries and how these factors operate. OBJECTIVE:To investigate the relationship between Piezo-type mechanosensitive ion channel component 1(Piezo1)and the occurrence of pressure injuries. METHODS:(1)Cellular experiment:Human immortalized keratinocytes(HaCaT)were treated with Yoda1,a Piezo1 agonist,at different concentrations.Cell viability,calcium ion influx,Piezo1,and apoptosis-related protein expression were detected.(2)Animal experiment:Twelve Sprague-Dawley rats were randomly divided into a control group and three experimental groups,with three rats in each group.The control group was not subjected to pressure,while in the three experimental groups,magnets with a thickness of 1,2,and 3 mm were used to press on both sides of the rats'back for 1 hour,respectively,to establish the animal models of pressure injuries.After modeling,all traumatic tissues were excised and subjected to hematoxylin-eosin,Masson,immunofluorescence staining and western blot assay. RESULTS AND CONCLUSION:Cellular experiments:The results of live/dead cell staining showed that HaCaT cell apoptosis increased with the increase of Yoda1 concentration(0,2.5,5,and 10 μmol/L),and calcium ion influx increased with the increase of Yoda1 concentration(0,5,and 10 μmol/L),as well as with the prolongation of treatment time.Western blot assay results showed an increase in the expression of BAX,TG2,and PIEZO1 and a decrease in the expression of the expression of Bcl-2 protein in HaCaT cells in 5 and 10 μmol/L Yoda1 groups compared with the control group(0 μmol/L Yoda1).Animal experiments:The results of hematoxylin-eosin and Masson staining showed that the skin structure of the three experimental groups was damaged at the compression site,there was subcutaneous fat liquefaction and necrosis,and collagen was sparse and disorganized,and damage to the skin structure at the compression site was aggravated with the increase of magnet thickness.Immunofluorescence staining and western blot results showed that compared with the control group,the expression of BAX,TG2,Yap1 and PIEZO1 proteins was elevated,and the expression of Bcl-2 proteins was lowered in the three experimental groups.Moreover,the expression of related proteins showed more significant changes with the increase of magnet thickness(pressure).To conclude,skin compression activates PIEZO1,leading to a significant influx of calcium ions.As the pressure increases,this ultimately results in cell apoptosis due to calcium overload.
7.Comparison of multiple machine learning models for predicting the survival of recipients after lung transplantation
Lingzhi SHI ; Yaling LIU ; Haoji YAN ; Zengwei YU ; Senlin HOU ; Mingzhao LIU ; Hang YANG ; Bo WU ; Dong TIAN ; Jingyu CHEN
Organ Transplantation 2025;16(2):264-271
Objective To compare the performance and efficacy of prognostic models constructed by different machine learning algorithms in predicting the survival period of lung transplantation (LTx) recipients. Methods Data from 483 recipients who underwent LTx were retrospectively collected. All recipients were divided into a training set and a validation set at a ratio of 7:3. The 24 collected variables were screened based on variable importance (VIMP). Prognostic models were constructed using random survival forest (RSF) and extreme gradient boosting tree (XGBoost). The performance of the models was evaluated using the integrated area under the curve (iAUC) and time-dependent area under the curve (tAUC). Results There were no significant statistical differences in the variables between the training set and the validation set. The top 15 variables ranked by VIMP were used for modeling and the length of stay in the intensive care unit (ICU) was determined as the most important factor. Compared with the XGBoost model, the RSF model demonstrated better performance in predicting the survival period of recipients (iAUC 0.773 vs. 0.723). The RSF model also showed better performance in predicting the 6-month survival period (tAUC 6 months 0.884 vs. 0.809, P = 0.009) and 1-year survival period (tAUC 1 year 0.896 vs. 0.825, P = 0.013) of recipients. Based on the prediction cut-off values of the two algorithms, LTx recipients were divided into high-risk and low-risk groups. The survival analysis results of both models showed that the survival rate of recipients in the high-risk group was significantly lower than that in the low-risk group (P<0.001). Conclusions Compared with XGBoost, the machine learning prognostic model developed based on the RSF algorithm may preferably predict the survival period of LTx recipients.
8.Effects and mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure
Meiling MAO ; Jianqi LU ; Zhide ZHU ; Yan PANG ; Liyu XIE ; Jiayong CHEN ; Xinyu WU ; Xiang XIAO ; Junshen LU ; Weiqi SHI
China Pharmacy 2025;36(2):160-165
OBJECTIVE To investigate the effects and potential mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure (CHF). METHODS The CHF model was established by ligating the left anterior descending branch of the coronary artery. Modeled rats were divided into model group, Qiangxin decoction low-dose and high-dose groups (12.25, 24.50 g/kg, calculated by crude drug), and chemical medicine group (Sacubitril valsartan sodium tablets, 10.42 mg/kg), with 10 rats in each group; control group was set up without treatment. Each group of rats was orally administered with the corresponding medication or normal saline twice a day for 28 consecutive days. After the last medication, the contents of N-terminal pro-brain natriuretic peptide (NT-proBNP) and adenosine triphosphate (ATP) in serum and phosphatidic acid (PA) and cardiolipin (CL) in myocardial tissue were all detected; the pathological damage and collagen fibrosis of rat myocardial tissue were observed; the apoptosis of myocardial cells was determined; the ultrastructure of myocardial tissue was observed; the protein expressions of mitofusin 1 (Mfn1), Mfn2, optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (Drp1) were all detected in myocardial tissue. RESULTS Compared with control group,the serum content of NT-proBNP, apoptotic rate of myocardial cells, and relative expressions of S-OPA1 and Drp1 proteins were all increased significantly; serum content of ATP,contents of PA and CL, and relative expressions of Mfn1, Mfn2 and L-OPA1 proteins were all significantly reduced (P<0.05). There were abnormal membrane tissue structure in various layers of myocardial tissue, degeneration and necrosis of myocardial cells, and severe fibrosis; the mitochondria were swollen, with reduced or absent cristae, and uneven matrix density. After intervention with Qiangxin decoction, the levels of the aforementioned quantitative indicators in serum and myocardial tissue of rats (excluding CL content in the Qiangxin decoction low- dose group) were significantly reversed (P<0.05); the pathological damage of myocardial tissue had significantly improved, fibrosis had significantly reduced, mitochondrial morphology tended to be normal, cristae had increased, and matrix density was uniform. CONCLUSIONS Qiangxin decoction can regulate myocardial mitochondrial function and structural integrity of CHF rats, thereby improving myocardial energy metabolism and antagonizing myocardial fibrosis, the mechanism of which may be associated with activating PA/Mfn/CL signaling pathway.
9.Effects and mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure
Meiling MAO ; Jianqi LU ; Zhide ZHU ; Yan PANG ; Liyu XIE ; Jiayong CHEN ; Xinyu WU ; Xiang XIAO ; Junshen LU ; Weiqi SHI
China Pharmacy 2025;36(2):160-165
OBJECTIVE To investigate the effects and potential mechanism of Qiangxin decoction on mitochondrion of rats with chronic heart failure (CHF). METHODS The CHF model was established by ligating the left anterior descending branch of the coronary artery. Modeled rats were divided into model group, Qiangxin decoction low-dose and high-dose groups (12.25, 24.50 g/kg, calculated by crude drug), and chemical medicine group (Sacubitril valsartan sodium tablets, 10.42 mg/kg), with 10 rats in each group; control group was set up without treatment. Each group of rats was orally administered with the corresponding medication or normal saline twice a day for 28 consecutive days. After the last medication, the contents of N-terminal pro-brain natriuretic peptide (NT-proBNP) and adenosine triphosphate (ATP) in serum and phosphatidic acid (PA) and cardiolipin (CL) in myocardial tissue were all detected; the pathological damage and collagen fibrosis of rat myocardial tissue were observed; the apoptosis of myocardial cells was determined; the ultrastructure of myocardial tissue was observed; the protein expressions of mitofusin 1 (Mfn1), Mfn2, optic atrophy protein 1 (OPA1) and dynamin-related protein 1 (Drp1) were all detected in myocardial tissue. RESULTS Compared with control group,the serum content of NT-proBNP, apoptotic rate of myocardial cells, and relative expressions of S-OPA1 and Drp1 proteins were all increased significantly; serum content of ATP,contents of PA and CL, and relative expressions of Mfn1, Mfn2 and L-OPA1 proteins were all significantly reduced (P<0.05). There were abnormal membrane tissue structure in various layers of myocardial tissue, degeneration and necrosis of myocardial cells, and severe fibrosis; the mitochondria were swollen, with reduced or absent cristae, and uneven matrix density. After intervention with Qiangxin decoction, the levels of the aforementioned quantitative indicators in serum and myocardial tissue of rats (excluding CL content in the Qiangxin decoction low- dose group) were significantly reversed (P<0.05); the pathological damage of myocardial tissue had significantly improved, fibrosis had significantly reduced, mitochondrial morphology tended to be normal, cristae had increased, and matrix density was uniform. CONCLUSIONS Qiangxin decoction can regulate myocardial mitochondrial function and structural integrity of CHF rats, thereby improving myocardial energy metabolism and antagonizing myocardial fibrosis, the mechanism of which may be associated with activating PA/Mfn/CL signaling pathway.
10.The distribution pattern of traditional Chinese medicine syndromes and influencing factors for primary liver cancer: An analysis of 415 cases
Zhiyao SHI ; Xiaofei FAN ; Yu GAO ; Shaojian REN ; Shiyu WU ; Xixing WANG
Journal of Clinical Hepatology 2025;41(1):84-91
ObjectiveTo investigate the influencing factors for traditional Chinese medicine (TCM) syndromes of primary liver cancer, and to provide a theoretical basis for the TCM syndrome differentiation and standardized treatment of liver cancer. MethodsTCM syndrome differentiation was performed for 415 patients who were admitted to Shanxi Institute of Traditional Chinese Medicine and were diagnosed with primary liver cancer based on pathological or clinical examinations from January 2019 to December 2023. The chi-square test was used for comparison of categorical data between groups, and the unordered polytomous logistic regression model was used to investigate the influencing factors for TCM syndromes of liver cancer. ResultsThe common initial symptoms of the 415 patients with primary liver cancer included pain in the liver area (31.81%), abdominal distension (25.30%), abdominal pain (15.18%), and weakness (13.98%), and the main clinical symptoms included poor appetite (70.84%), fatigue (69.16%), pain in the liver area (67.47%), poor sleep (59.04%), abdominal distension (53.01%), and constipation (52.53%). There were significant differences in TCM syndromes between patients with different sexes, courses of the disease, clinical stages, Child-Pugh classes, presence or absence of intrahepatic and extrahepatic metastasis, and presence or absence of transcatheter arterial chemoembolization (TACE) and radiofrequency ablation (all P<0.05). The logistic regression analysis showed that male sex was a risk factor for damp-heat accumulation (odds ratio [OR]=2.036, P=0.048) and the syndrome of spleen-kidney Yang deficiency (OR=5.240, P<0.001); a course of disease of<1 year was a risk factor for damp-heat accumulation (OR=2.837, P=0.004) and syndrome of Qi stagnation and blood stasis (OR=2.317, P=0.021), but it was a protective factor against syndrome of spleen-kidney Yang deficiency (OR=0.385, P=0.005); Child-Pugh class A/B was a protective factor against liver-kidney Yin deficiency (OR=0.079, P<0.001); intrahepatic metastasis was a risk factor for liver-kidney Yin deficiency (OR=5.117, P=0.003) and syndrome of spleen-kidney Yang deficiency (OR=3.303, P=0.010); TACE was a protective factor against liver-kidney Yin deficiency (OR=0.171, P<0.001) and syndrome of spleen-kidney Yang deficiency (OR=0.138, P<0.001); radiofrequency ablation was a risk factor for damp-heat accumulation (OR=4.408, P<0.001) and liver-kidney Yin deficiency (OR=32.036, P<0.001). ConclusionSex, course of disease, Child-Pugh class, intrahepatic metastasis, TACE, and radiofrequency ablation are the main influencing factors for TCM syndromes of liver cancer.

Result Analysis
Print
Save
E-mail