1.Advances in molecular mechanisms and neuronal circuits underlying circadian rhythms in Drosophila.
Wu-Yan XU ; Chun-Xue QIAO ; Fei-Xiang LI ; Ding-Bang MA
Acta Physiologica Sinica 2025;77(4):627-640
Circadian rhythms are core regulatory mechanisms that evolved to align biological functions with the Earth's rotation. These rhythms are conserved across organisms from unicellular life to multicellular species and play essential roles in metabolism, immune responses, and sleep-wake cycle. Circadian disruptions are strongly associated with various diseases. Over the past decades, genetic studies in Drosophila and mice have identified key conserved clock genes and uncovered transcription-translation feedback loops governing circadian regulation. Additionally, rhythmic neurons in the brain integrate complex neural circuits to precisely regulate physiological and behavioral rhythms. This review highlights recent advances in understanding the neuronal circuit mechanisms of rhythmic neurons in the Drosophila brain and discusses future directions for translating circadian rhythm research into chronomedicine and precision therapies.
Animals
;
Circadian Rhythm/genetics*
;
Neurons/physiology*
;
Drosophila/physiology*
;
Brain/physiology*
;
Nerve Net/physiology*
2.Discovery and proof-of-concept study of a novel highly selective sigma-1 receptor agonist for antipsychotic drug development.
Wanyu TANG ; Zhixue MA ; Bang LI ; Zhexiang YU ; Xiaobao ZHAO ; Huicui YANG ; Jian HU ; Sheng TIAN ; Linghan GU ; Jiaojiao CHEN ; Xing ZOU ; Qi WANG ; Fan CHEN ; Guangying LI ; Chaonan ZHENG ; Shuliu GAO ; Wenjing LIU ; Yue LI ; Wenhua ZHENG ; Mingmei WANG ; Na YE ; Xuechu ZHEN
Acta Pharmaceutica Sinica B 2025;15(10):5346-5365
Sigma-1 receptor (σ 1R) has become a focus point of drug discovery for central nervous system (CNS) diseases. A series of novel 1-phenylethan-1-one O-(2-aminoethyl) oxime derivatives were synthesized. In vitro biological evaluation led to the identification of 1a, 14a, 15d and 16d as the most high-affinity (K i < 4 nmol/L) and selective σ 1R agonists. Among these, 15d, the most metabolically stable derivative exhibited high selectivity for σ 1R in relation to σ 2R and 52 other human targets. In addition to low CYP450 inhibition and induction, 15d also exhibited high brain permeability and excellent oral bioavailability. Importantly, 15d demonstrated effective antipsychotic potency, particularly for alleviating negative symptoms and improving cognitive impairment in experimental animal models, both of which are major challenges for schizophrenia treatment. Moreover, 15d produced no significant extrapyramidal symptoms, exhibiting superior pharmacological profiles in relation to current antipsychotic drugs. Mechanistically, 15d inhibited GSK3β and enhanced prefrontal BDNF expression and excitatory synaptic transmission in pyramidal neurons. Collectively, these in vivo proof-of-concept findings provide substantial experimental evidence to demonstrate that modulating σ 1R represents a potential new therapeutic approach for schizophrenia. The novel chemical entity along with its favorable drug-like and pharmacological profile of 15d renders it a promising candidate for treating schizophrenia.
3.Bacterial Adhesion on Bionic Surface of Anastomotic Nail in Gastrointestinal Microenvironment:A Microflow Field Simulation
Rongchuan FENG ; Yahui HU ; Yan MA ; Chunqiu ZHANG ; Shuhong LIU ; Bang LIU ; Weihua FU
Journal of Medical Biomechanics 2024;39(2):339-345
Objective To simulate the microflow field environment between the anastomotic nail surface and intestinal wall tissue after implantation and to study the effect of hydrophobic surfaces on the flow rate of extracellular fluid and the fluid shear force on the wall to regulate bacterial adhesion through changes in the flow field.Methods The microstructure of shark skin was observed,and a simplified two-dimensional(2D)movement model of bacteria in a microflow field was established.Using computational fluid dynamics(CFD)numerical simulation,the movement of bacteria on a smooth surface and micro-textured surface in a static and dynamic flow field were simulated.The flow field characteristics around bacteria and the magnitude of fluid shear force under the two surface environments were compared,and the internal mechanism of the fluid shear force affecting bacterial adhesion was analyzed.Results The addition of the biomimetic microtexture enhanced the flow rate of the extracellular fluid in the microflow field,and the fluid had little viscous effect on the bacteria in the static flow field.The fluid in the dynamic flow field had a stronger pushing effect on the bacteria.The fluid shear force on the microtextured wall increased when the pit width was within a specific range.Conclusions The bionic micro-textured surface of the anastomotic nail can accelerate the flow rate of extracellular fluid,increase the fluid shear force of micro-textured walls and bacteria,and influence bacterial adhesion.These result provide a theoretical basis for studying bacteriostatic surfaces of anastomotic nails.
4.Jolkinolide B Ameliorates Liver Inflammation and Lipogenesis by Regulating JAK/STAT3 Pathway
Hye-Rin NOH ; Guoyan SUI ; Jin Woo LEE ; Feng WANG ; Jeong-Su PARK ; Yuanqiang MA ; Hwan MA ; Ji-Won JEONG ; Dong-Su SHIN ; Xuefeng WU ; Bang-Yeon HWANG ; Yoon Seok ROH
Biomolecules & Therapeutics 2024;32(6):793-800
Hepatic dysregulation of lipid metabolism exacerbates inflammation and enhances the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). STAT3 has been linked to lipid metabolism and inflammation. Jolkinolide B (JB), derived from Euphorbia fischeriana, is known for its pharmacological anti-inflammatory and anti-tumor properties. Therefore, this study investigated whether JB affects MASLD prevention by regulating STAT3 signaling. JB attenuated steatosis and inflammatory responses in palmitic acid (PA)-treated hepatocytes. Additionally, JB treatment reduced the mRNA expression of de-novo lipogenic genes, such as acetyl-CoA carboxylase and stearoyl-CoA desaturase 1. Interestingly, JB-mediated reduction in inflammation and lipogenesis was dependent on STAT3 signaling. JB consistently modulated mitochondrial dysfunction and the mRNA expression of inflammatory cytokines by inhibiting PA-induced JAK/STAT3 activation. This study suggests that JB is a potential therapeutic agent to prevent major stages of MASLD through inhibition of JAK/STAT3 signaling in hepatocytes.
5.Causal relationship between relative abundance of gut microbiota and teratozoospermia:A two-sample Mendelian randomization analysis
Xiao-Hui HAO ; Rui-Min MA ; Si-Cheng MA ; Wen-Bang LIU ; Chen-Ming ZHANG ; Wen-Lin YU ; Jing HU ; Zu-Long WANG
National Journal of Andrology 2024;30(5):387-396
Objective:To explore the potential causal relationship between gut microbiota and teratozoospermia.Methods:We searched the database of Genome-Wide Association Study(GWAS)for gut microbiota-and teratozoospermia-related data.We used gut microbiota as an exposure factor,determined the instrumental variables according to the GWAS data on 18 340 participants released by the MiBioGen Alliance,and derived the outcome variables from the European data on teratozoospermia,with a sample size of 85 716,including 915 cases and 209 006 controls.Using inverse-variance weighting(IVW),MR-Egger regression and the weighted median estimator(WME),we performed two-sample Mendelian randomization(MR)analysis on the retrieved data,and estimated the causal relationship between gut microbiota and teratozoospermia based on the β value.Results:Two-sample MR analysis indicated that the class Erysipelotrichia,family Erysipelotrichaceae,family Streptococcaceae,genus Coprococcusl,genus Ruminococcaceae UCG009,genus Streptococcus,order Clostridialesm and order Erysipelotrichales were causally related with the increased risk,while the family Porphyromonadaceae with the decreased risk of teratozoospermia.Conclusion:The class Erysipelotrichia,family Erysipe-lotrichaceae,family Streptococcaceae,genus Coprococcusl,genus Ruminococcaceae UCG009,genus Streptococcus,order Clostridia-lesm and order Erysipelotrichales are one of the causes of teratozoospermia,related to the increased risk of the condition,while the family Porphyromonadaceae has a protective effect on sperm morphology,reducing the risk of teratozoospermia.
6.Treatment of male immune infertility by traditional Chinese medicine:A meta-analysis
Chun-Mei FAN ; Si-Qi MA ; Ke-Fan DING ; Yi-Jian YANG ; Xin-Bang WEN ; Zi-Qin ZHAO ; Shu-Hui CHEN ; Guo-Zheng QIN
National Journal of Andrology 2024;30(6):547-563
Objective:To evaluate the efficacy and safety of traditional Chinese medicine(TCM)in the treatment of male im-mune infertility(MII)by meta-analysis.Methods:We retrieved randomized controlled trial(RCT)on the treatment of male im-mune infertility with traditional Chinese medicine from the databases of WanFang,Chinese Biomedical Literature,Cochrane Library,Weipu,PubMed and CNKI,and performed methodological quality assessment of the RCTs identified and statistical analysis and evalua-tion of the publication bias using the RevMan5.4 software.Results:Totally,25 RCTs(2 563 cases)were included in this study.Compared with Western medicine alone in the treatment of MII,TCM achieved a significantly higher total effectiveness rate(OR=6.35,95% CI:4.96-8.13,P<0.000 01),negative conversion rate of seminal plasma anti-sperm antibodies(OR=4.52,95% CI:2.72-7.51,P<0.000 01),negative rate of serum anti-sperm antibodies(OR=2.98,95% CI:2.23-3.96,P<0.000 01),sperm concentration(MD=15.56,95% CI:11.32-19.79,P<0.000 01),grade a sperm motility(MD=3.85,95% CI:1.91-5.79,P=0.000 01),grade a+b sperm motility(MD=13.77,95% CI:7.06-20.48,P<0.000 1),sperm viability(MD=10.32,95% CI:6.78-13.86,P<0.000 01)and pregnancy rate(OR=3.53,95% CI:2.68-4.63,P<0.000 01),but a lower rate of adverse reactions(OR=0.06,95% CI:0.01-0.23,P<0.000 01).There was no statistically significant difference in the percentage of morphologically abnormal sperm between TCM and Western medicine alone in the treatment of MII(MD=-7.53,95% CI:-15.50-0.44,P=0.06).Conclusion:TCM has a definite effectiveness and high safe in the treatment of male immune infertility.
7.Jolkinolide B Ameliorates Liver Inflammation and Lipogenesis by Regulating JAK/STAT3 Pathway
Hye-Rin NOH ; Guoyan SUI ; Jin Woo LEE ; Feng WANG ; Jeong-Su PARK ; Yuanqiang MA ; Hwan MA ; Ji-Won JEONG ; Dong-Su SHIN ; Xuefeng WU ; Bang-Yeon HWANG ; Yoon Seok ROH
Biomolecules & Therapeutics 2024;32(6):793-800
Hepatic dysregulation of lipid metabolism exacerbates inflammation and enhances the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). STAT3 has been linked to lipid metabolism and inflammation. Jolkinolide B (JB), derived from Euphorbia fischeriana, is known for its pharmacological anti-inflammatory and anti-tumor properties. Therefore, this study investigated whether JB affects MASLD prevention by regulating STAT3 signaling. JB attenuated steatosis and inflammatory responses in palmitic acid (PA)-treated hepatocytes. Additionally, JB treatment reduced the mRNA expression of de-novo lipogenic genes, such as acetyl-CoA carboxylase and stearoyl-CoA desaturase 1. Interestingly, JB-mediated reduction in inflammation and lipogenesis was dependent on STAT3 signaling. JB consistently modulated mitochondrial dysfunction and the mRNA expression of inflammatory cytokines by inhibiting PA-induced JAK/STAT3 activation. This study suggests that JB is a potential therapeutic agent to prevent major stages of MASLD through inhibition of JAK/STAT3 signaling in hepatocytes.
8.Jolkinolide B Ameliorates Liver Inflammation and Lipogenesis by Regulating JAK/STAT3 Pathway
Hye-Rin NOH ; Guoyan SUI ; Jin Woo LEE ; Feng WANG ; Jeong-Su PARK ; Yuanqiang MA ; Hwan MA ; Ji-Won JEONG ; Dong-Su SHIN ; Xuefeng WU ; Bang-Yeon HWANG ; Yoon Seok ROH
Biomolecules & Therapeutics 2024;32(6):793-800
Hepatic dysregulation of lipid metabolism exacerbates inflammation and enhances the progression of metabolic dysfunction-associated steatotic liver disease (MASLD). STAT3 has been linked to lipid metabolism and inflammation. Jolkinolide B (JB), derived from Euphorbia fischeriana, is known for its pharmacological anti-inflammatory and anti-tumor properties. Therefore, this study investigated whether JB affects MASLD prevention by regulating STAT3 signaling. JB attenuated steatosis and inflammatory responses in palmitic acid (PA)-treated hepatocytes. Additionally, JB treatment reduced the mRNA expression of de-novo lipogenic genes, such as acetyl-CoA carboxylase and stearoyl-CoA desaturase 1. Interestingly, JB-mediated reduction in inflammation and lipogenesis was dependent on STAT3 signaling. JB consistently modulated mitochondrial dysfunction and the mRNA expression of inflammatory cytokines by inhibiting PA-induced JAK/STAT3 activation. This study suggests that JB is a potential therapeutic agent to prevent major stages of MASLD through inhibition of JAK/STAT3 signaling in hepatocytes.
9.Determination of monosaccharide composition of polysaccharide and free monosaccharides in Cistanches Herba by ion chromatography-integral pulsed amperometry
Wei-yi XU ; Zhen-bang JIANG ; Jing FAN ; Hong-yu JIN ; Shuang-cheng MA
Acta Pharmaceutica Sinica 2023;58(8):2476-2482
Polysaccharides and free monosaccharides are important active components in Cistanches Herba, which have functions of anti-aging and immunological activity regulation. The study of monosaccharide composition in polysaccharide and free monosaccharide can lay a foundation for the study of primary structure, spatial structure of Cistanche polysaccharide and biological activity of Cistanches Herba. In this study, a method of water extraction and alcohol precipitation was used to extract Cistanche polysaccharide. Trifluoroacetic acid was selected as the hydrolytic acid for polysaccharide hydrolysis. An orthogonal experimental method is established. Three levels of acid concentration, hydrolysis temperature and hydrolysis time were selected to investigate the optimal hydrolysis condition. The optimal hydrolysis condition was 0.08 mol·L-1 trifluoroacetic acid hydrolysis at 100 ℃ for 3 h. The free monosaccharides of Cistanches Herba were extracted by water extraction. The established ion chromatogram integrated pulsed amperometry method can efficiently separate 11 monosaccharides in a short time. The method has good repeatability and high sensitivity, methodological experiment results meet the requirements of quantitative determination. It can accurately determine the monosaccharide composition of Cistanche polysaccharide and free monosaccharide content. Ion chromatography does not require derivatization operation and the pre-treatment steps are simple. This method can measure fructose, but PMP derivation-HPLC method can't. The monosaccharide composition of Cistanche polysaccharide include fucose, arabinose, rhamnose-galactose, glucose, xylose, mannose, fructose, ribose and glucuronic acid, among which the contents of glucose and fructose are relatively high. The free monosaccharides in the water extract of Cistanches Herba include glucose, fructose and mannose.
10.Effects of small GTP-binding protein GDP dissociation stimulator on adipocyte hypertrophy and glucose metabolism disorder in mice.
Ting XIONG ; Ti WANG ; Xi Wei CHEN ; Yu Xue YANG ; Zi Wei MA ; Bang Yun ZUO ; Da Xin WANG
Chinese Journal of Internal Medicine 2023;62():833-840
Objective: To explore the effect and mechanism of small GTP-binding protein GDP dissociation stimulator (SmgGDS) on the development of obesity. Methods: (1) 8-week-old C57BL/6J mice were randomly assigned to normal diet and high fat diet group, with 6 mice in each group. They were fed regular feed and a high fat diet containing 60% fat for 4 months, respectively. The expression of SmgGDS in epididymal adipose tissue (eWAT), liver, and skeletal muscle were measured using Western-blot. (2) 6-week-old wild-type (WT) and SmgGDS knockdown (KD) mice were divided into four groups, each receiving high fat diet for 4 months (7 in each group) and 7 months (9 in each group). Glucose tolerance test (GTT) and insulin tolerance test (ITT) were conducted; The weight, adipose tissue, and liver weight of mice were recorded; HE staining examined adipose tissue structural changes; Western-blot determined extracellular signal-regulated kinase (ERK) 1/2 phosphorylation levels in eWAT; Real time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect mRNA levels of CCAAT/enhancer binding protein α (C/EBPα), C/EBPβ and peroxisome proliferator activated receptor γ (PPARγ) in eWAT. (3) Mouse embryonic fibroblasts (MEFs) extracted from WT and KD mice were induced for differentiation. Oil red O staining and Western-blot were used to detect lipid droplet and expression of SmgGDS and phospho-ERK; C/EBPα, C/EBPβ and PPARγ mRNA levels were measured using RT-qPCR. (4) 10-week-old C57BL/6J mice were randomly assigned into two groups, with 7 mice in each group. Mice were infected with SmgGDS overexpressing adeno-associated virus (AAV-SmgGDS) or empty vector intraperitoneally, then fed with high fat diet. After 4 weeks, performed GTT and ITT; Recorded the weight and adipose tissue weight of mice; HE staining was used to analyze structural changes of eWAT; Western-blot was used to detect the phosphorylation level of ERK in eWAT. Results: (1) The expression of SmgGDS was significantly upregulated in eWAT of high fat diet fed mice (normal diet group: 0.218±0.037, high fat diet group:0.439±0.072, t=2.74, P=0.034). (2) At 4 months of high fat diet intervention, the glucose tolerance (60 minutes after glucose injection, WT group: 528 mg/dl±21 mg/dl, KD group: 435 mg/dl±17 mg/dl, t=3.47, P=0.030; 90 minutes, WT group: 463 mg/dl±24 mg/dl, KD group: 366 mg/dl±18 mg/dl, t=3.23, P=0.047;120 minutes, WT group: 416 mg/dl±21 mg/dl, KD group: 297 mg/dl±16 mg/dl, t=4.49, P=0.005) and insulin sensitivity (15 minutes after insulin injection, WT group: 77.79%±3.45%, KD group: 54.30%±2.92%, t=3.49, P=0.005; 30 minutes, WT group: 62.27%±5.31%, KD group: 42.25%±1.85%, t=2.978, P=0.024; 90 minutes, WT group: 85.69%±6.63%, KD group: 64.71%±5.41%, t=3.120, P=0.016) of KD mice were significantly improved compared to the WT group, with an increase in eWAT weight ratio (WT: 4.19%±0.18%, KD: 5.12%±0.37%, t=2.28, P=0.042), but a decrease in average adipocyte area (WT group: 5221 μm²±241 μm², KD group: 4410 μm²±196 μm², t=2.61, P=0.026). After 7 months of high fat diet, the eWAT weight ratio of KD mice decreased (WT: 5.02%±0.20%, KD: 3.88%±0.21%, t=3.92, P=0.001) and adipocyte size decreased (WT group: 6 783 μm²±390 μm², KD group: 4785 μm²±303 μm², t=4.05, P=0.002). The phospho-ERK1 in eWAT increased (WT group: 0.174±0.056, KD group: 0.588±0.147, t=2.64, P=0.025), and mRNA level of PPARγ significantly decreased (WT group: 1.018±0.128, KD group: 0.029±0.015, t=7.70, P=0.015). (3) The expression of SmgGDS was significantly increased in differentiated MEF (undifferentiated: 6.789±0.511, differentiated: 10.170±0.523, t=4.63, P=0.010); SmgGDS knock-down inhibited lipid droplet formation in MEF (WT group: 1.00±0.02, KD group: 0.88±0.02, t=5.05, P=0.007) and increased ERK1 (WT group: 0.600±0.179, KD group: 1.325±0.102, t=3.52, P=0.025) and ERK2 (WT group: 2.179±0.687, KD group: 5.200±0.814, t=2.84, P=0.047) activity, which can be reversed by ERK1/2 inhibitor. (4) SmgGDS over expression resulted in weight gain, increased eWAT weight (control group: 3.29%±0.36%, AAV-SmgGDS group: 4.27%±0.26%, t=2.20, P=0.048) and adipocyte size (control group: 3525 μm²±454 μm², AAV-SmgGDS group: 5326 μm²±655 μm², t=2.26, P=0.047), impaired insulin sensitivity(30 minutes after insulin injection, control group: 44.03%±4.29%, AAV-SmgGDS group: 62.70%±2.81%, t=3.06, P=0.019), and decreased ERK1 (control group: 0.829±0.077, AAV-SmgGDS group: 0.326±0.036, t=5.96, P=0.001)and ERK2 (control group: 5.748±0.287, AAV-SmgGDS group: 2.999±0.845, t=3.08, P=0.022) activity in eWAT. Conclusion: SmgGDS knockdown improves obesity related glucose metabolism disorder by inhibiting adipogenesis and adipose tissue hypertrophy, which is associated with ERK activation.

Result Analysis
Print
Save
E-mail