1.Liuwei Dihuangwan Promote Mitophagy to Modulate Neuroinflammation and Behavioral Impairments in Rat Model of Autism Spectrum Disorder (ASD)
Pengjue HUANG ; Mingyue JIANG ; Ji WU ; Niya YIN ; Lei OUYANG ; Qinquan ZHU ; Di ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):52-60
ObjectiveTo observe the effect of Liuwei Dihuangwan on behavioral impairments in the rat model of autism spectrum disorder (ASD) and explore the mechanism of action. MethodsTwelve SD pregnant rats were intraperitoneally injected with valproic acid (VPA) (10 rats) or normal saline (2 rats), and male offspring were selected to establish the model of ASD and the control rats. Rats were randomly assigned into model, low-dose (0.75 g·kg-1) and high-dose (1.5 g·kg-1) Liuwei Dihuangwan, vitamin D (positive drug, 3.7×10-5 g·kg-1), and blank groups. Each group was administrated with the corresponding concentration of drugs or the same volume of normal saline by gavage for 2 weeks. After the intervention, the three-chamber social test was conducted to evaluate social interaction and social preference. The open field test was carried out to observe spontaneous behavior and anxiety state. Hematoxylin-eosin staining (HE) was used to observe the pathological changes of the prefrontal tissue. Transmission electron microscopy was employed to observe the ultrastructure of mitochondria in prefrontal neurons. Immunofluorescence was used to detect the expression of ionized calcium-binding adapter molecule-1 (Iba-1) in the prefrontal tissue. Enzyme-linked immunosorbent assay (ELISA) was adopted to measure the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Western blot was employed to assess the expression differences of phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK), adenosine monophosphate-activated protein kinase (AMPK), phosphorylated Unc-51-like autophagy-activating kinase 1 (p-ULK1), Unc-51-like autophagy-activating kinase 1 (ULK1), and FUN14 domain-containing protein 1 (FUNDC1). ResultsCompared with the blank group, the model group spent less time sniffing stranger 1 and stranger 2 in the three-chamber social test (P<0.01) and showed reductions in the total distance traveled, average speed, distance traveled in the central area, and time spent in the central area in the open field test (P<0.01). In addition, the model group showed extensive apoptosis of neurons, with shrunken nuclei and red-stained cytoplasm, and extensive necrosis of neurons in the prefrontal tissue, mitochondrial swelling, decreased matrix density, disrupted cristae, and autophagic lysosomes in neurons, increases in the rate of Iba-1 positive cells in the prefrontal area (P<0.01) and the levels of TNF-α and IL-6 (P<0.01), and down-regulation in the expression of p-AMPK/AMPK, p-ULK1/ULK1, and FUNDC1 (P<0.01). Compared with the model group, low-dose and high-dose Liuwei Dihuangwan and the vitamin D prolonged the time spent sniffing stranger 1 and stranger 2 in the three-chamber social test (P<0.05, P<0.01), increased the total distance traveled, average speed, distance traveled in the central area, and time spent in the central area in the open field test (P<0.05, P<0.01), restored the morphology of neurons in the prefrontal tissue, decreased the number of apoptotic cells, alleviated the swelling of mitochondria in neurons, increased the matrix density, mitigated the fragmentation and disorder of cristae, and increased the number of autophagosomes. Moreover, the drugs decreased the rate of Iba-1 positive cells in the prefrontal area (P<0.01), lowered the levels of TNF-α and IL-6 (P<0.01), and up-regulated the expression of p-AMPK/AMPK, p-ULK1/ULK1, and FUNDC1 (P<0.01). ConclusionLiuwei Dihuangwan ameliorate autism-like behaviors and reduce neuronal apoptosis and neuroinflammatory damage in the rat model of ASD by promoting mitophagy mediated by the AMPK/ULK1/FUNDC1 pathway.
2.Huangqi Jianzhongtang Regulates Polarization of Macrophages M1/M2 and Improves Fat Consumption in Cancer Cachexia Mice
Zhiyan FANG ; Haiyan ZHU ; Wenying HUAI ; Cong HUANG ; Ruocong YANG ; Haiyan YU ; Tiane ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):61-69
ObjectiveTo investigate the effects of Huangqi Jianzhongtang (HQJZ) on macrophage polarization and fat consumption in cancer cachexia (CC) mice. MethodsUltra-performance liquid chromatography-quadrupole/electrostatic field Orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap HRMS) was used to control the quality of HQJZ. (1) In vitro experiment: HQJZ-containing serum was prepared, and the optimal concentration was determined by cytotoxicity assay. Mouse monocyte-derived macrophages (RAW264.7) were cultured and randomly divided into six groups, including a blank group, a classically activated macrophages (M1) group, an alternatively activated macrophages (M2) group, a HQJZ + blank group, a HQJZ+M1 group, and a HQJZ + M2 group. The relative expression of macrophage marker genes CD86, inducible nitric oxide synthase (iNOS), CD206, and arginase-1 (Arg1) was detected by real-time quantitative polymerase chain reaction (Real-time PCR ). (2) In vivo experiment: Thirty-two BALB/c mice were randomly divided into a control group, a model group, a medroxyprogesterone acetate (MPA) group, and a HQJZ group. Except for the control group, the other mice were injected with CT-26 colon cancer cells to establish a CC model. Mice in the MPA and HQJZ groups were given MPA (0.13 g·kg-1·d-1) or HQJZ (13.13 g·kg-1·d-1) by gavage, respectively, while mice in the control and model groups were given an equal volume of saline by gavage, with interventions continued for 10 d. Real-time PCR was used to detect the expression of macrophage markers (iNOS, Arg1, CD86, CD206) and fat browning-related genes uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor γ (PPARγ) in epididymal adipose tissue. Western blot (WB) was used to detect protein expression levels of UCP1 and PPARγ. Micro-computed tomography (micro-CT) was used to measure residual fat volume, and hematoxylin-eosin (HE) staining was used to assess fat browning and calculate pathological scores. ResultsIn vitro, the dominant effective concentration of HQJZ-containing serum was 12.5%. Real-time PCR results showed that, compared with the blank group, Arg1 expression decreased in the HQJZ+blank group (P<0.05), CD206 showed a downward trend without statistical significance, while iNOS and CD86 expression were significantly increased (P<0.05). Compared with the M1 group, Arg1 and CD206 expression decreased in the HQJZ+M1 group (P<0.05). Compared with the M2 group, CD206 expression decreased in the HQJZ+M2 group (P<0.05), CD86 expression increased significantly (P<0.01). In vivo, Real-time PCR results showed that, compared with the control group, CD86 and CD206 expression levels were significantly increased in the model group (P<0.01). Compared with the model group, CD206 expression in the MPA group was significantly decreased (P<0.01). In the HQJZ group, CD206 was significantly decreased (P<0.01). WB results showed that, compared with the model group, protein expression of UCP1 and PPARγ was significantly reduced in the HQJZ group (P<0.05, P<0.01). micro-CT results showed that the total white fat volume in the HQJZ group was greater than that in the model group (P<0.05). HE staining results showed that pathological scores in the HQJZ group were lower than those in the model group (P<0.05). ConclusionHQJZ may inhibit white adipose tissue browning by promoting macrophage M1 polarization and suppressing M2 polarization, thereby delaying fat consumption in CC mice.
3.Molecular Crosstalk Mechanisms of Shoutai Wan and Juyuan Jian on Maternal-fetal Interface Subcellular Clusters in CBA/J×DBA/2 Recurrent Pregnancy Loss Model
Jingxin GAO ; Qiuping CHEN ; Xiaoyan ZHENG ; Pengfei ZENG ; Rui ZHOU ; Yancai TANG ; Qian ZENG ; Wenli GUO ; Jinzhu HUANG ; Weijun DING ; Linwen DENG ; Hang ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):70-87
ObjectiveTo systematically compare the differential regulation of the maternal-fetal interface cell lineages and communication networks in the CBA/J×DBA/2 mouse model of recurrent pregnancy loss (RPL) by the two classic therapeutic methods-tonifying the kidney to stabilize the fetus and invigorating the spleen to stabilize the fetus (Shoutai Wan, Juyuan Jian)-of traditional Chinese medicine (TCM) at the single-cell resolution and clarify their modern scientific connotations. MethodsFemale non-pregnant CBA/J mice were caged with male BALB/c (blank group) and DBA/2 (modeling group) mice separately. Pregnant mice in the modeling group were randomly grouped as follows: high/low-dose Shoutai Wan, high/low-dose Juyuan Jian, model (RPL), and positive control (dydrogesterone), with 10 mice in each group. Starting from the day after the detection of the vaginal plug, mice were administrated with drugs or an equal volume of normal saline by gavage for 10 consecutive days. After the intervention, the following indicators were measured. ① Macroscopic evaluation: general conditions, uterine wet weight, embryo loss rate, four coagulation parameters [prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), and thrombin time (TT)], and peripheral blood estradiol (E2) and progesterone (Pg) levels. The decidua with embryos was stained with hematoxylin-eosin (HE) and evaluated by transmission electron microscopy (TEM). The expression of B-cell lymphoma-2 (Bcl-2), vascular endothelial growth factor (VEGF), angiotensin Ⅱ (AngⅡ), matrix metalloproteinase-2 (MMP-2), interleukin-6 (IL-6), leukemia inhibitory factor (LIF), CXC chemokine ligand 12 (CXCL12), and microtubule-associated protein 1 light chain 3 homolog (LC3)Ⅰ/Ⅱ was quantified by Western blot. ② Mechanism analysis at the single-cell level: The decidua with embryos from the blank, model, high-dose Shoutai Wan, and high-dose Juyuan Jian groups (6 mice per group, with 3 single-cell samples per group, totaling 24 mice) were analyzed by the BD Rhapsody™ platform, and the whole-cell atlas was drawn by uniform manifold approximation and projection (UMAP) dimensionality reduction clustering combined with the single-cell mouse cell atlas (scMCA). The differentially expressed genes (DEGs) and cell interaction networks were analyzed via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and CellChat, and the protein-protein interaction (PPI) map of subtype cells was constructed. The CytoTRACE pseudo-temporal analysis was performed to explore the developmental trajectories of core immune cells (natural killer cells, NK cells) from maternal and fetal sources. Results① Pathological and Western blot results indicated that compared with the blank group, the RPL group showed an increase in the embryo loss rate (P<0.01), down-regulated expression of Bcl-2, LIF, MMP-2, and Vegf in the decidua with embryos (P<0.05), up-regulated protein levels of CXCL-12, AngⅡ, and IL-6 (P<0.05), blocked angiogenesis, apoptosis-inflammation imbalance, and coagulation dysfunction. Both prescriptions dose-dependently reduced the abortion rate and restored the angiogenesis-inflammation balance, and Shoutai pill showed superior performance in restoring the E2 level to the Pg level (P<0.05). ② Single-cell transcriptome analysis indicated that compared with the blank group, the RPL group showed differences in multiple key cell populations such as decidual cells, trophoblast cells, endothelial cells, erythroblasts, NK cells, and macrophages at the maternal-fetal interface. Immunity and angiogenesis were the key links in RPL. Compared with the RPL group, high-dose Shoutai Wan reversed the changes of NK cells in the embryonic layer (upregulating the mRNA levels of 17 genes and downregulating the mRNA levels of 29 genes) and macrophages (upregulating the mRNA levels of 117 genes and downregulating the mRNA levels of 53 genes) through the regulation of gene expression. High-dose Shoutai pill regulated the immune cells to affect unfolded proteins, cell adhesion, and programmed cell death, thereby promoting decidualization and angiogenesis and modulating embryo-membrane development. High-dose Juyuan Jian regulated the key subgroups of NK cells (up-regulating the mRNA levels of 9 genes and down-regulating the mRNA levels of 17 genes) and macrophages (up-regulating the mRNA levels of 110 genes and down-regulating the mRNA levels of 81 genes), which affected decidual inflammation and apoptosis and intervened in glycolysis. ③ The pseudo-temporal analysis and communication network indicated that the communication frequency of the RPL group decreased. High-dose Shoutai Wan restored maternal-fetal tolerance through pathways such as NKG2D, CDH5, GDF, and FASLG. High-dose Juyuan Jian enhanced the IL-6/LIFR/JAK/signal transducer and activator of transcription 3 (STAT3) and desmosome/SEMA6/tumor necrosis factor-like weak inducer of apoptosis (TWEAK) signaling to improve endometrial receptivity. The RPL group showed an increased proportion of toxic dNK7, a decreased proportion of reparative dNK4, and blocked embryo fNK1. High-dose Shoutai Wan down-regulated dNK7 and up-regulated dNK4. High-dose Juyuan Jian inhibited the terminal differentiation of dNK7 and up-regulated LILRB1, thus restoring the balance of cytotoxicity and repair. ConclusionBoth the kidney-tonifying and spleen-invigorating methods are effective in treating RPL. NK and macrophages are the key immune cells in the interaction between the embryo and the membrane. The kidney-tonifying method (Shoutai Wan) has an advantage in regulating the phenotypes of unfolded protein, cell adhesion, and programmed cell death, and shows expression characteristics closer to the physiological state in the regulation of NKG2D and CDH5 signals. The spleen-invigorating method (Juyuan Jian) has an advantage in regulating epithelial-mesenchymal transition (EMT), angiogenesis, and glycolysis and shows higher communication intensity in the IL-6 and LIFR pathways.
4.Exploring Chemical Constituent Distribution in Blood/Brain(Hippocampus) and Emotional Regulatory Effect of Raw and Vinegar-processed Products of Citri Reticulatae Pericarpium Viride
Yi BAO ; Yonggui SONG ; Qianmin LI ; Zhifu AI ; Genhua ZHU ; Ming YANG ; Huanhua XU ; Qin ZHENG ; Yiting HUANG ; Zihan GAO ; Dan SU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):189-197
ObjectiveTo investigate the migration and distribution characteristics of chemical constituents in blood and hippocampal tissues before and after vinegar processing of Citri Reticulatae Pericarpium Viride(CRPV), and to explore the potential material basis and mechanisms underlying their regulatory effects on emotional disorders by comparing the effects of raw and vinegar-processed products of CRPV. MethodsUltra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS) was employed to characterize and identify the chemical constituents of raw and vinegar-processed products of CRPV extracts, as well as their migrating components in blood and hippocampal tissues after oral administration. Reference standards, databases, and relevant literature were utilized for compound annotation, with data processing performed using PeakView 1.2 software. Seventy male C57BL/6 mice were randomly divided into seven groups, including the blank group, model group, diazepam group(2.5 mg·kg-1), raw CRPV low/high dose groups(0.6, 1.2 g·kg-1), and vinegar-processed CRPV low/high dose groups(0.6, 1.2 g·kg-1), with 10 mice per group. Except for the blank group, all other groups underwent chronic restraint stress(2 h·d-1) for 20 d. Each drug-treated group received oral administration at the predetermined dose starting 10 d after modeling, with a total treatment duration of 10 d. Following model-based drug administration, mice underwent open-field, forced swimming, and elevated plus maze tests. After anesthesia with isoflurane, whole brains were collected from each group of mice, and hippocampi were dissected. Reactive oxygen species(ROS) level in hippocampal tissues was quantified by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe hippocampal tissue morphology. Immunofluorescence was performed to detect neuronal nuclei(NeuN) and peroxisome proliferator-activated receptor alpha(PPARα) expressions in hippocampal tissue. Then, pharmacodynamic evaluations were conducted to assess the effects of raw and vinegar-processed CRPV on mood disorders, exploring the potential mechanisms. ResultsVinegar processing caused significant changes in the chemical composition of CRPV, with 18 components showing increased relative content and 35 components showing decreased relative content. The primary changes occurred in flavonoid compounds, including 20 flavonoids, 20 flavonoid glycosides, 3 triterpenes, 3 phenolic acids, 1 alkaloid, and 6 other compounds. Twenty-one components were detected in blood(15 methoxyflavones, 4 flavonoid glycosides, and 2 phenolic acids), with 17 shared between raw and vinegar-processed CRPV. Seven components reached hippocampal tissues(all common to both forms). In regulating emotional disorders, Vinegar-processed CRPV exhibited superior antidepressant-like effects compared to raw products. HE staining revealed that both treatments improved hippocampal neuronal morphology, particularly in the damaged CA1 and CA3 regions. Immunofluorescence and ELISA analyses demonstrated that both raw and vinegar-processed CRPV significantly modulated NeuN and PPARα expressions in hippocampal tissue while alleviating oxidative stress induced by excessive ROS(P<0.05). ConclusionThe chemical composition of CRPV undergoes changes after vinegar processing, but the migrating components in blood and hippocampus are primarily methoxyflavonoids. These components may serve as the potential material basis for activating the PPARα pathway, thereby negatively regulating ROS generation in the hippocampus, reducing oxidative stress, and promoting the development of NeuN-positive neurons. These findings provide experimental evidence for enhancing quality standards, pharmacodynamic material research, and active drug development of raw and vinegar-processed CRPV.
5.Pathogenesis and Syndrome Differentiation of "Gaozhuo" of Oxidative Stress in Diabetic Kidney Disease
Yuman YIN ; Yunfeng YU ; Xiangning HUANG ; Jiawang HUANG ; Gang HU ; Juan HUANG ; Rong YU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):226-234
Oxidative stress is a pivotal factor in the onset and progression of diabetic kidney disease (DKD), and it plays an essential role in the prevention and treatment of DKD. The "Gaozhuo" pathogenesis posits that DKD is characterized by the invasion of Gaozhuo and damage to the kidney collaterals, with the underlying cause being the insufficiency of spleen Qi and the internal formation of Gaozhuo, which provides valuable guidance on oxidative stress. The insufficiency of spleen Qi and the internal formation of Gaozhuo represent a dynamic, evolving process. Gaozhuo invades the kidney collaterals, impairs kidney Qi, and progressively leads to the congealing and stagnation of Gaozhuo and blood, ultimately resulting in the failure of both the spleen and kidneys. The damage caused by Gaozhuo to the kidney collaterals and kidney Qi is analogous to the organ and functional damage of the kidneys induced by excessive reactive oxygen species and oxidative stress. Damage to the kidney collaterals means organic injuries to the glomeruli, renal tubules, and renal interstitium, and the depletion of kidney Qi refers to damage to glomerular filtration and renal tubular reabsorption. The congealing and stagnation of Gaozhuo and blood in the kidney collaterals is similar to oxidative stress-induced thickening of the glomerular basement membrane and fibrosis. The interaction between spleen and kidney Qi deficiency and the congealing and stagnation of Gaozhuo and blood creates a vicious cycle that exacerbates the condition, ultimately evolving into the failure of both the spleen and kidneys. The failure of the spleen and kidneys is analogous to renal failure, and its extreme manifestation is end-stage renal disease and uremia. The treatment of oxidative stress in DKD with traditional Chinese medicine (TCM) is based on the principles of strengthening the spleen and tonifying the kidneys, and dispelling turbidity and removing blood stasis. According to the syndrome type, it is recommended to use methods such as strengthening the spleen and tonifying Qi while dispelling dampness and removing turbidity, strengthening the spleen and tonifying the kidneys while dispelling dampness and removing turbidity, strengthening the spleen and tonifying the kidneys while dispelling turbidity and removing blood stasis, or consolidating the spleen and kidneys while clearing away turbidity and blood stasis.
6.Syndrome Differentiation and Treatment Mechanisms of Inflammatory Injury in Diabetic Cardiomypathy from Theory of "Gaozhuo"
Xiaoyue WANG ; Yunfeng YU ; Xiangning HUANG ; Yixin XIANG ; Sihao ZHANG ; Qin XIANG ; Rong YU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):235-244
Diabetic cardiomyopathy (DCM) is one of the most common complications of diabetes mellitus and is a major threat to global health. As a key mechanism in the occurrence and progression of DCM, the inflammatory response persists throughout the entire course of the DCM. The Gaozhuo theory suggests that the basic pathogenesis of inflammatory injury in DCM is the Qi deficiency of spleen and kidney and Gaozhuo invasion, and divides the pathological process into three phases: Gaozhuo invasion, turbid heat damage to the channels, and turbid blood stasis and heat junction. Among them, the Qi deficiency of spleen and kidney and the endogenous formation of Gaozhuo represent the process of inflammatory factor formation induced by glucose metabolism disorders. Turbid heat damage to the channels refers to the process of myocardial inflammatory injury mediated by inflammatory factors, and turbid blood stasis and heat junction are the process of myocardial injury developing toward myocardial fibrosis and ventricular remodeling. As the disease continues to progress, it eventually develops into a depletion of the heart Yang, leading to the ultimate regression of heart failure. According to the theory of Gaozhuo, traditional Chinese medicine (TCM) should regulate inflammatory injury in DCM by strengthening the spleen and tonifying the kidney to address the root cause, and resolving dampness and lowering turbidity to treat the symptoms. If the turbidity has been stored for a long time and turns into heat, strengthening the spleen and tonifying the kidney, and clearing heat and resolving turbidity should be the therapy. If the turbidity, stasis, and heat are knotted in the heart and collaterals, strengthening the spleen and tonifying the kidney, and resolving stasis and lowering turbidity should be the therapy. TCM compounds and monomers can regulate the inflammatory response in DCM. TCM compounds can be divided into the categories for benefiting Qi to resolve turbidity, benefiting Qi and clearing heat to resolve turbidity, and benefiting Qi and activating blood to reduce turbidity. The compounds can inhibit upstream signals of inflammation and expression of inflammatory factors, improve the inflammatory damage to myocardium and blood vessels, myocardial fibrosis, and cardiac systole and diastole, and thus slow down the onset and progression of DCM.
7.Discussion on Theory of "Gaozhuo" and Syndrome Differentiation and Treatment for Microcirculatory Disorders in Diabetic Retinopathy
Kai WU ; Yunfeng YU ; Xiangning HUANG ; Qianhong LIU ; Fangfang LI ; Rong YU ; Xiaolei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):245-252
Retinal microcirculatory disorder is a key factor in the occurrence and development of diabetic retinopathy (DR), and also an important link in the prevention and treatment of DR. The theory of "Gaozhuo" holds that the microcirculatory disorder in DR is based on the deficiency of spleen Qi and is characterized by the obstruction caused by "Gaozhuo" and blood stasis. The deficiency of spleen Qi is an essential precondition for the endogenous formation and accumulation of Gaozhuo, while Gaozhuo invasion is the direct cause of microcirculatory disorders in DR. The deficiency of spleen Qi and the endogenous formation of Gaozhuo mean the process in which glucose metabolism dysfunction induces an excessive production of inflammatory factors and lipid metabolites. The obstruction caused by "Gaozhuo" and blood stasis is the direct pathogenesis of microcirculatory disorders in DR, encompassing two stages: Gaozhuo obstruction and turbidity and stasis stagnation. Gaozhuo obstruction and turbidity and stasis stagnation represent the process in which inflammatory factors and lipid metabolites damage the retinal microcirculation and induce thrombosis, thus mediating microcirculatory disorders. Turbidity and stasis stagnation and blood extravasation outside the vessels reveal the progression to microvascular rupture and hemorrhage resulting from the microcirculatory disorders. According to the pathogenesis evolution of the theory of "Gaozhuo", microcirculatory disorders in DR can be divided into deficiency of spleen Qi with Gaozhuo obstruction, deficiency of spleen Qi with turbidity and stasis stagnation, and turbidity and stasis stagnation with blood extravasation outside the vessels. Clinically, treatment principles should focus on strengthening the spleen and benefiting Qi, resolving turbidity, and dispersing stasis. Different syndrome patterns should be addressed with tailored therapies, such as enhancing the spleen and benefiting Qi while regulating Qi and reducing turbidity, strengthening the spleen and benefiting Qi while resolving turbidity and dispelling stasis, and strengthening the spleen and resolving turbidity while removing stasis and stopping bleeding. Representative prescriptions include modified Wendantang, modified Buyang Huanwutang, modified Danggui Buxuetang, Zhuixue Mingmu decoction, Tangmuqing, Shengqing Jiangzhuo Tongluo Mingmu prescription, Danhong Huayu decoction, and Yiqi Yangyin Huoxue Lishui formula.
8.Syndrome Differentiation and Treatment Mechanisms of Hepatic Stellate Cell Activation in Type 2 Diabetes Mellitus Combined with Non-alcoholic Fatty Liver Disease Based on Theory of "Gaozhuo"
Yixin XIANG ; Yunfeng YU ; Xiaoyue WANG ; Xiangning HUANG ; Qin XIANG ; Rong YU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):253-260
Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of type 2 diabetes mellitus (T2DM), and hepatic stellate cell (HSC) activation is the key link in the progression of NAFLD to liver fibrosis. According to the theory of "Gaozhuo", spleen deficiency and Qi stagnation, along with Gaozhuo invasion, are the causes of NAFLD progression to liver fibrosis, which reveals the pathogenesis essence of HSC activation in traditional Chinese medicine (TCM). Among them, spleen deficiency and Qi stagnation are the root causes of the endogenous formation of Gaozhuo. Spleen deficiency indicates the insulin sensitivity decrease and glucose metabolism disorders, and Qi stagnation means the dysregulation of hepatic glucose and lipid metabolism, which creates the preconditions for HSC activation. Gaozhuo invasion is the direct cause of HSC activation, including three stages: Internal retention of Gaozhuo, turbidity and stasis stagnation, and toxic stasis and consolidation. Internal retention of Gaozhuo refers to the abnormal metabolism and deposition of hepatic lipids, as well as the microcirculatory disorders. Turbidity and stasis stagnation is the process by which lipotoxicity stimulates the transformation of HSC into myofibroblast (MFB), and toxic stasis and consolidation represent the secretion of a large amount of extracellular matrix (ECM) by MFB to promote the fibrosis. According to the theory of Gaozhuo and the activation process of HSC, syndromes for T2DM combined with NAFLD can be classified into spleen deficiency and Qi stagnation with internal retention of Gaozhuo, spleen Qi deficiency with turbidity and stasis stagnation, and spleen Qi deficiency with toxic stasis and consolidation. Clinically, the treatment principle is to strengthen the spleen and promote Qi, resolve turbidity, and eliminate blood stasis. Both TCM compounds and monomers can effectively inhibit the HSC activation. TCM compounds can be classified into categories for regulating spleen and harmonizing liver, resolving turbidity and removing stasis, and detoxifying and removing stasis. They mainly work by improving lipid metabolism, reducing lipid accumulation in the liver, alleviating inflammatory and oxidative stress responses, inhibiting the activation and proliferation of HSC, and reducing ECM deposition, thereby delaying the progression of liver fibrosis.
9.Processing History and Modern Research of Bile-processed Coptidis Rhizoma: A Review
Zhaowei DONG ; Jing YANG ; Qinwan HUANG ; Jin WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):269-278
Bile-processed Coptidis Rhizoma(B-pCR), first documented in Shengji Zonglu, is a unique processed products of Coptidis Rhizoma(CR) characterized by "mutual enhancement processing" and "enhancing the cold property of cold-natured herbs". Pig bile can enhance the bitter and cold properties of CR, yielding potent effects in purging excess fire from the liver and gallbladder. The processing increases the dissolution of alkaloids such as berberine, coptisine, and palmatine, while introducing bile acids from pig bile, including taurine-type and glycine-type cholic acids. This enhances its pharmacological effects, such as antipyretic activity, regulation of glucose and lipid metabolism disorders, and intestinal absorption. Traditional processing techniques and quality standards for B-pCR are outlined in the Shanghai Traditional Chinese Medicine(TCM) Decoction Pieces Processing Standard and the Gansu TCM Processing Standard. However, incomplete specifications for critical process parameters and quality criteria significantly impact its production and clinical application. A review of research over the past two decades on the processing history, process optimization, quality evaluation, material basis, and changes in pharmacological effects and properties of B-pCR reveals that the pretreatment method and dosage of pig bile, and processing temperature are key factors influencing its quality. Furthermore, current quality standards lack specific indicators. Additionally, the enhancement of the cold property and medicinal efficacy direction of B-pCR is not only associated with changes in alkaloid groups but also depend on the synergistic effects of bile acids. This review can provide insights for improving the quality evaluation system of B-pCR.
10.Combined Therapy of Traditional Chinese and Western Medicine for Hepatitis B Virus Infection: A Review
Xuan WU ; Hui LI ; Jian HUANG ; Xikun YANG ; Yan ZENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):279-288
Hepatitis B virus (HBV) infection is the primary cause of viral hepatitis and represents a substantial disease burden in China. However, effective and safe agents capable of completely eliminating HBV DNA are still lacking. In modern medicine, anti-HBV strategies mainly target covalently closed circular DNA (cccDNA), among other mechanisms, and multiple novel drugs are currently under clinical investigation. Traditional medicine has been shown to exert anti-HBV effects through direct pathways, such as blocking viral entry, as well as indirect pathways, including the regulation of programmed cell death. Studies have confirmed that the integration of traditional Chinese medicine (TCM) and Western medicine in treating HBV infection and its related complications offers complementary advantages, particularly in enhancing HBV clearance rates, improving liver function, preventing various complications, and delaying the progression from hepatic fibrosis to hepatocellular carcinoma. This review focuses on advances in anti-HBV research involving TCM, Western medicine, and their integrated application, aiming to provide a basis for integrated HBV therapy and new drug development.

Result Analysis
Print
Save
E-mail