1.Kaixin San-medicated serum attenuates Aβ_(25-35)-induced injury in SH-SY5Y cells by regulating autophagy.
Han-Wen XING ; Yi YANG ; Yan-Ping YIN ; Lan XIE ; Fang FANG
China Journal of Chinese Materia Medica 2025;50(2):313-321
The aim of this study is to investigate the regulation of Kaixin San-medicated serum(KXS-MS) on autophagy induced by Aβ_(25-35) in SH-SY5Y cells. The SH-SY5Y cell model of Aβ_(25-35)(25 μmol·L~(-1))-induced injury was established, and different concentrations of KXS-MS were added into the culture media of cells, which were then incubated for 24 h. Cell viability was measured by the methyl thiazolyl tetrazolium(MTT) assay. The protein levels of microtubule-associated protein 1 light chain 3(LC3)Ⅰ, LC3Ⅱ, protein kinase B(Akt), p-Akt, mammalian target of rapamycin(mTOR), and p-mTOR were assessed by Western blot. Furthermore, the combination of rapamycin(Rapa)/3-methyladenine(3-MA) and low concentration of KXS-MS was added to the culture medium of SH-SY5Y cells injured by Aβ_(25-35), and the cell viability and the expression levels of the above proteins were determined. The results showed that Aβ_(25-35) decreased the cell viability, up-regulated the expression levels of LC3Ⅱ and LC3Ⅱ/LC3Ⅰ, and down-regulated the expression levels of p-Akt, p-mTOR, p-Akt/Akt, and p-mTOR/mTOR. Compared with the Aβ_(25-35) model group, KXS-MS treatment attenuated Aβ_(25-35)-induced injury and enhanced the survival of SH-SY5Y cells. Meanwhile, KXS-MS down-regulated the LC3Ⅱ/LC3Ⅰ level and up-regulated the p-Akt/Akt and p-mTOR/mTOR levels. Compared with the low-concentration KXS-MS group, Rapa did not affect the cell survival and the levels of p-Akt and p-Akt/Akt, while it up-regulated the levels of LC3Ⅱ and LC3Ⅱ/LC3Ⅰ and down-regulated the levels of p-mTOR and p-mTOR/mTOR. 3-MA significantly reduced the cell survival rate and p-Akt, p-Akt/Akt level in the KXS-MS group, while it had no significant effect on the levels of LC3Ⅱ, LC3Ⅱ/LC3Ⅰ, p-mTOR, and p-mTOR/mTOR. The above results indicate that KXS-MS exhibits protective effects against Aβ_(25-35)-induced damage in SH-SY5Y cells by up-regulating Akt/mTOR activity to inhibit autophagy.
Humans
;
Autophagy/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Amyloid beta-Peptides/toxicity*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Cell Line, Tumor
;
Cell Survival/drug effects*
;
Peptide Fragments/toxicity*
;
Microtubule-Associated Proteins/genetics*
2.Crocin Inhibited Aβ Generation via Modulating APP Processing, Suppressing Endoplasmic Reticulum Stress and Activating Autophagy in N2a/APP Cells.
Zi-Rong LIANG ; Cui-Jun LIN ; Yi-Han LIU ; Qian YUE ; Pui Man HOI
Chinese journal of integrative medicine 2025;31(11):973-981
OBJECTIVE:
To explore the mechanism of crocin, a major active component of Crocus sativus (Zanghonghua), in regulating amyloid beta (Aβ) generation, endoplasmic reticulum (ER) stress, and autophagy in neuronal cells, with potential therapeutic applications in Alzheimer's disease (AD).
METHODS:
Mouse neuroblastoma Neuron2a (N2a) cells stably transfected with the human amyloid precursor protein (APP) Swedish mutant was used as a cellular model for AD (N2a/APP). Control cells were vector transfected (N2a/vector). The effects of 3 different doses of crocin on reactive oxygen species (ROS) generation, cytosolic calcium, and apoptosis were evaluated by flow cytometry. Aβ levels were determined by enzyme-linked immunosorbent assay. APP processing and ER stress proteins expressions were determined by Western blot. Autophagosome formation was evaluated by autophagy detection kit and confocal microscope.
RESULTS:
Crocin inhibited APP expression in N2a/APP cells and promoted α-cleavage of APP processing, while modestly reduced beta-secretase 1 (BACE1) and presenilin 1 (PS1, P<0.05 or P<0.01). ER stress markers, including the binding immunoglobulin protein/78-kD glucose-regulated protein (Bip/GRP78) and C/EBP homologous protein (CHOP), were elevated in N2a/APP cells compared to N2a/vector cells (P<0.05). Crocin could effectively reduce the levels of ER stress (P<0.05 or P<0.01). In addition, crocin enhanced autophagy by promoting formation of autophagosome (P<0.05 or P<0.01).
CONCLUSION
Crocin significantly inhibited Aβ generation by promoting α-cleavage of APP processing, inhibiting ER stress-associated unfolded protein response, and regulating autophagy.
Endoplasmic Reticulum Stress/drug effects*
;
Autophagy/drug effects*
;
Animals
;
Endoplasmic Reticulum Chaperone BiP
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Carotenoids/pharmacology*
;
Humans
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Calcium/metabolism*
3.Triple-Target Inhibition of Cholinesterase, Amyloid Aggregation, and GSK3β to Ameliorate Cognitive Deficits and Neuropathology in the Triple-Transgenic Mouse Model of Alzheimer's Disease.
Junqiu HE ; Shan SUN ; Hongfeng WANG ; Zheng YING ; Kin Yip TAM
Neuroscience Bulletin 2025;41(5):821-836
Alzheimer's disease (AD) poses one of the most urgent medical challenges in the 21st century as it affects millions of people. Unfortunately, the etiopathogenesis of AD is not yet fully understood and the current pharmacotherapy options are somewhat limited. Here, we report a novel inhibitor, Compound 44, for targeting cholinesterases, amyloid-β (Aβ) aggregation, and glycogen synthase kinase 3β (GSK-3β) simultaneously with the aim of achieving symptomatic relief and disease modification in AD therapy. We found that Compound 44 had good inhibitory effects on all intended targets with IC50s of submicromolar or better, significant neuroprotective effects in cell models, and beneficial improvement of cognitive deficits in the triple transgenic AD (3 × Tg AD) mouse model. Moreover, we showed that Compound 44 acts as an autophagy regulator by inducing nuclear translocation of transcription factor EB through GSK-3β inhibition, enhancing the biogenesis of lysosomes and elevating autophagic flux, thus ameliorating the amyloid burden and tauopathy, as well as mitigating the disease phenotype. Our results suggest that triple-target inhibition via Compound 44 could be a promising strategy that may lead to the development of effective therapeutic approaches for AD.
Animals
;
Alzheimer Disease/genetics*
;
Mice, Transgenic
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Disease Models, Animal
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Cholinesterase Inhibitors/therapeutic use*
;
Humans
;
Autophagy/drug effects*
;
Cognitive Dysfunction/pathology*
;
Neuroprotective Agents/pharmacology*
4.Facilitating microglial phagocytosis by which Jiawei Xionggui Decoction alleviates cognitive impairment via TREM2-mediated energy metabolic reprogramming.
Wen WEN ; Jie CHEN ; Junbao XIANG ; Shiqi ZHANG ; Jingru LIU ; Jie WANG ; Ping WANG ; Shijun XU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):909-919
Triggering receptor expressed on myeloid cells 2 (TREM2)-mediated microglial phagocytosis is an energy-intensive process that plays a crucial role in amyloid beta (Aβ) clearance in Alzheimer's disease (AD). Energy metabolic reprogramming (EMR) in microglia induced by TREM2 presents therapeutic targets for cognitive impairment in AD. Jiawei Xionggui Decoction (JWXG) has demonstrated effectiveness in enhancing energy supply, protecting microglia, and mitigating cognitive impairment in APP/PS1 mice. However, the mechanism by which JWXG enhances Aβ phagocytosis through TREM2-mediated EMR in microglia remains unclear. This study investigates how JWXG facilitates microglial phagocytosis and alleviates cognitive deficits in AD through TREM2-mediated EMR. Microglial phagocytosis was evaluated through immunofluorescence staining in vitro and in vivo. The EMR level of microglia was assessed using high-performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA) kits. The TREM2/protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/hypoxia-inducible factor-1α (HIF-1α) signaling pathway was analyzed using Western blotting in BV2 cells. TREM2-/- BV2 cells were utilized for reverse validation experiments. The Aβ burden, neuropathological features, and cognitive ability in APP/PS1 mice were evaluated using ELISA kits, immunohistochemistry (IHC), and the Morris water maze (MWM) test. JWXG enhanced both the phagocytosis of EMR disorder-BV2 cells (EMRD-BV2) and increased EMR levels. Notably, these effects were significantly reversed in TREM2-/- BV2 cells. JWXG elevated TREM2 expression, adenosine triphosphate (ATP) levels, and microglial phagocytosis in APP/PS1 mice. Additionally, JWXG reduced Aβ-burden, neuropathological lesions, and cognitive deficits in APP/PS1 mice. In conclusion, JWXG promoted TREM2-induced EMR and enhanced microglial phagocytosis, thereby reducing Aβ deposition, improving neuropathological lesions, and alleviating cognitive deficits.
Drugs, Chinese Herbal/pharmacology*
;
Microglia/drug effects*
;
Phagocytosis
;
Cognitive Dysfunction/drug therapy*
;
Metabolic Reprogramming
;
Animals
;
Mice
;
Cell Line
;
Receptors, Immunologic/metabolism*
;
Membrane Glycoproteins/metabolism*
;
Signal Transduction
;
Amyloid beta-Peptides/metabolism*
;
Energy Metabolism
5.Therapeutic Mechanism of Kai Xin San on Alzheimer's Disease Based on Network Pharmacology and Experimental Validation.
Kan WANG ; Rong YANG ; Tuan-Tuan CHEN ; Mei-Rong QIN ; Ping WANG ; Ming-Wang KONG
Chinese journal of integrative medicine 2023;29(5):413-423
OBJECTIVE:
To explore the specific pharmacological molecular mechanisms of Kai Xin San (KXS) on treating Alzheimer's disease (AD) based on network pharmacology and experimental validation.
METHODS:
The chemical compounds of KXS and their corresponding targets were screened using the Encyclopedia of Traditional Chinese Medicine (ETCM) database. AD-related target proteins were obtained from MalaCards database and DisGeNET databases. Key compounds and targets were identified from the compound-target-disease network and protein-protein interaction (PPI) network analysis. Functional enrichment analysis predicted the potential key signaling pathways involved in the treatment of AD with KXS. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, the predicted key signaling pathway was validated experimentally. Positioning navigation and space search experiments were conducted to evaluate the cognitive improvement effect of KXS on AD rats. Western blot was used to further examine and investigate the expression of the key target proteins related to the predicted pathway.
RESULTS:
In total, 38 active compounds and 469 corresponding targets of KXS were screened, and 264 target proteins associated with AD were identified. The compound-target-disease and PPI networks identified key active ingredients and protein targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested a potential effect of KXS in the treatment of AD via the amyloid beta (A β)-glycogen synthase kinase-3 beta (GSK3 β)-Tau pathway. Molecular docking revealed a high binding affinity between the key ingredients and targets. In vivo, KXS treatment significantly improved cognitive deficits in AD rats induced by Aβ1-42, decreased the levels of Aβ, p-GSK3β, p-Tau and cyclin-dependent kinase 5, and increased the expressions of protein phosphatase 1 alpha (PP1A) and PP2A (P<0.05 or P<0.01).
CONCLUSION
KXS exerted neuroprotective effects by regulating the Aβ -GSK3β-Tau signaling pathway, which provides novel insights into the therapeutic mechanism of KXS and a feasible pharmacological strategy for the treatment of AD.
Rats
;
Animals
;
Alzheimer Disease/drug therapy*
;
Amyloid beta-Peptides
;
Glycogen Synthase Kinase 3 beta
;
Network Pharmacology
;
Molecular Docking Simulation
;
Glycogen Synthase Kinase 3/therapeutic use*
;
Drugs, Chinese Herbal/therapeutic use*
6.Resveratrol and Sir2 Reverse Sleep and Memory Defects Induced by Amyloid Precursor Protein.
Yuping HAO ; Lingzhan SHAO ; Jianan HOU ; Yan ZHANG ; Yuqian MA ; Jinhao LIU ; Chuan XU ; Fujun CHEN ; Li-Hui CAO ; Yong PING
Neuroscience Bulletin 2023;39(7):1117-1130
Resveratrol (RES), a natural polyphenolic phytochemical, has been suggested as a putative anti-aging molecule for the prevention and treatment of Alzheimer's disease (AD) by the activation of sirtuin 1 (Sirt1/Sir2). In this study, we tested the effects of RES and Sirt1/Sir2 on sleep and courtship memory in a Drosophila model by overexpression of amyloid precursor protein (APP), whose duplications and mutations cause familial AD. We found a mild but significant transcriptional increase of Drosophila Sir2 (dSir2) by RES supplementation for up to 17 days in APP flies, but not for 7 days. RES and dSir2 almost completely reversed the sleep and memory deficits in APP flies. We further demonstrated that dSir2 acts as a sleep promotor in Drosophila neurons. Interestingly, RES increased sleep in the absence of dSir2 in dSir2-null mutants, and RES further enhanced sleep when dSir2 was either overexpressed or knocked down in APP flies. Finally, we showed that Aβ aggregates in APP flies were reduced by RES and dSir2, probably via inhibiting Drosophila β-secretase (dBACE). Our data suggest that RES rescues the APP-induced behavioral deficits and Aβ burden largely, but not exclusively, via dSir2.
Animals
;
Alzheimer Disease/metabolism*
;
Amyloid beta-Peptides
;
Amyloid beta-Protein Precursor/metabolism*
;
Drosophila/physiology*
;
Drosophila Proteins/metabolism*
;
Resveratrol/pharmacology*
;
Sirtuin 1
;
Sleep
8.Effect of moxibustion on autophagy in mice with Alzheimer's disease based on mTOR/p70S6K signaling pathway.
Yang-Yang WU ; Xiao-Ge SONG ; Cai-Feng ZHU ; Sheng-Chao CAI ; Xia GE ; Ling WANG ; Yu-Mei JIA
Chinese Acupuncture & Moxibustion 2022;42(9):1011-1016
OBJECTIVE:
To investigate the effect of moxibustion on autophagy and amyloid β-peptide1-42 (Aβ1-42) protein expression in amyloid precursor protein/presenilin 1 (APP/PS1) double-transgenic mice with Alzheimer's disease (AD).
METHODS:
After 2-month adaptive feeding, fifty-six 6-month-old APP/PS1 double transgenic AD mice were randomly divided into a model group, a moxibustion group, a rapamycin group and an inhibitor group, 14 mice in each group. Another 14 C57BL/6J mice with the same age were used as a normal group. The mice in the moxibustion group were treated with monkshood cake-separated moxibustion at "Baihui"(GV 20), "Fengfu" (GV 16) and "Dazhui" (GV 14) for 20 min; the mice in the rapamycin group were intraperitoneally injected with rapamycin (2 mg/kg); the mice in the inhibitor group were treated with moxibustion and injection of 1.5 mg/kg 3-methyladenine (3-MA). All the treatments were given once a day for consecutive 2 weeks. The morphology of hippocampal tissue was observed by HE staining; the ultrastructure of hippocampal tissue was observed by transmission electron microscopy; the expression of Aβ1-42 protein in frontal cortex and hippocampal tissue was detected by immunohistochemistry; the expressions of mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), p70 ribosomal protein S6 kinase (p70S6K) and phosphorylated p70S6K (p-p70S6K) protein in hippocampus were detected by Western blot method.
RESULTS:
Compared with the normal group, the number of neuron cells was decreased, cells were necrotic and deformed, and autophagy vesicle and lysosome were decreased in the model group. Compared with the model group, the number of neuron cells was increased, cell necrosis was decreased, and autophagy vesicle and lysosome were increased in the moxibustion group and the rapamycin group. Compared with the normal group, the protein expressions of Aβ1-42, mTOR, p-mTOR, p70S6K and p-p70S6K in the model group were increased (P<0.05); compared with the model group, the protein expressions of Aβ1-42, mTOR, p-mTOR, p70S6K and p-p70S6K in the moxibustion group, rapamycin group and inhibitor group were decreased (P<0.05); compared with the inhibitor group, the protein expressions of Aβ1-42, mTOR, p-mTOR, p70S6K and p-p70S6K in the moxibustion group and rapamycin group were decreased (P<0.05); compared with the rapamycin group, the protein expressions of mTOR, p-mTOR, p70S6K and p-p70S6K in the moxibustion group were decreased (P<0.05).
CONCLUSION
Moxibustion could enhance autophagy in hippocampal tissue of APP/PS1 double transgenic AD mice and reduce abnormal Aβ aggregation in brain tissue, the mechanism may be related to the inhibition of mTOR/p70S6K signaling pathway.
Alzheimer Disease/therapy*
;
Amyloid beta-Peptides/genetics*
;
Animals
;
Autophagy
;
Disease Models, Animal
;
Hippocampus/metabolism*
;
Mammals/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Mice, Transgenic
;
Moxibustion
;
Ribosomal Protein S6 Kinases, 70-kDa/pharmacology*
;
Signal Transduction
;
Sirolimus/pharmacology*
;
TOR Serine-Threonine Kinases/metabolism*
9.Mechanism of Atractylodes macrocephala against Alzheimer's disease via regulating lysophagy based on LKB1-AMPK-TFEB pathway.
Li-Min WU ; Jie ZHAO ; Xiao-Wei ZHANG ; Zhong-Hua LI ; Pan WANG ; Yi-Ran SUN ; Zhen-Qiang ZHANG ; Zhi-Shen XIE
China Journal of Chinese Materia Medica 2022;47(17):4723-4732
Myloid beta(Aβ) is produced by cleavage of amyloid precursor protein(APP), which is a main reason for Alzheimer's disease(AD) occurrence and development. This study preliminarily investigated the mechanism of Atractylodes macrocephala(AM) against AD based on LKB1-AMPK-TFEB pathway. The effect of AM on memory ability of AD transgenic Caenorhabditis elegans CL2241 was detected, and then the APP plasmid was transiently transferred to mouse neuroblastoma(N2 a) cells in vitro. The mice were divided into the blank control group, APP group(model group), positive control group(100 μmol·L~(-1) rapamycin), and AM low-, medium-and high-dose groups(100, 200 and 300 μg·mL~(-1)). The content of Aβ_(1-42) in cell medium, the protein level of APP, the fluorescence intensity of APP, the transcriptional activity of transcription factor EB(TFEB), the activity of lysosomes in autophagy, and autophagy flux were determined by enzyme-linked immunosorbent assay(ELISA), Western blot, fluorescence microscope, luciferase reporter gene assay, RLuc-LC3 wt/RLuc-LC3 G120 A, and mRFP-GFP-LC3, respectively. The protein expression of TFEB, LC3Ⅱ, LC3Ⅰ, LAMP2, Beclin1, LKB1, p-AMPK and p-ACC was detected by Western blot. Immunofluorescence and reverse transcription-polymerase chain reaction(RT-PCR) were used to detect the fluorescence intensity of TFEB and the mRNA expression of TFEB and downstream target genes, respectively. The results showed that AM reduced the chemotactic index of transgenic C. elegans CL2241, and decreased the content of Aβ in the supernatant of cell culture medium at different concentrations. In addition, AM lowered the protein level of APP and the fluorescence intensity of APP in a dose-dependent manner. Transcriptional activity of TFEB and fluorescence intensity of mRFP-GFP-LC3 plasmid were enhanced after AM treatment, and the value of RLuc-LC3 wt/RLuc-LC3 G120 A was reduced. AM promoted the protein levels of TFEB, LAMP2 and Beclin1 at different concentrations, and increased the protein expression ratio of LC3Ⅱ/LC3Ⅰ in a dose-dependent manner. Immunofluorescence results revealed that AM improved the fluorescence intensity and nuclear expression of TFEB, and RT-PCR results indicated that AM of various concentrations elevated the mRNA expression of TFEB in APP transfected N2 a cells and promoted the transcription level of LAMP2 in a dose-dependent manner, and high-concentration AM also increased the mRNA levels of LC3 and P62. The protein levels of LKB1, p-AMPK and p-ACC were elevated by AM of different concentrations. In summary, AM regulating lysophagy and degrading APP are related to the activation of LKB1-AMPK-TFEB pathway.
AMP-Activated Protein Kinases/metabolism*
;
Alzheimer Disease/drug therapy*
;
Amyloid beta-Peptides/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Animals
;
Atractylodes/chemistry*
;
Autophagy/drug effects*
;
Beclin-1/pharmacology*
;
Caenorhabditis elegans/metabolism*
;
Macroautophagy
;
Mice
;
RNA, Messenger
;
Sirolimus/pharmacology*
10.Ginsenoside Rg_1 protects PC12 cells against Aβ-induced injury through promotion of mitophagy by PINK1/parkin activation.
He-Mei LI ; Yi-Xuan JIANG ; Pan-Ling HUANG ; Bo-Cun LI ; Zi-Yu PAN ; Yu-Qing LI ; Xing XIA
China Journal of Chinese Materia Medica 2022;47(2):484-491
Amyloid β-protein(Aβ) deposition in the brain is directly responsible for neuronal mitochondrial damage of Alzheimer's disease(AD) patients. Mitophagy, which removes damaged mitochondria, is a vital mode of neuron protection. Ginsenoside Rg_1(Rg_1), with neuroprotective effect, has displayed promising potential for AD treatment. However, the mechanism underlying the neuroprotective effect of Rg_1 has not been fully elucidated. The present study investigated the effects of ginsenoside Rg_(1 )on the autophagy of PC12 cells injured by Aβ_(25-35) to gain insight into the neuroprotective mechanism of Rg_1. The autophagy inducer rapamycin and the autophagy inhi-bitor chloroquine were used to verify the correlation between the neuroprotective effect of Rg_1 and autophagy. The results showed that Rg_1 enhanced the viability and increased the mitochondrial membrane potential of Aβ-injured PC12 cells, while these changes were blocked by chloroquine. Furthermore, Rg_(1 )treatment increased the LC3Ⅱ/Ⅰ protein ratio, promoted the depletion of p62 protein, up-regulated the protein levels of PINK1 and parkin, and reduced the amount of autophagy adaptor OPTN, which indicated the enhancement of autophagy. After the silencing of PINK1, a key regulatory site of mitophagy, Rg_1 could not increase the expression of PINK1 and parkin or the amount of NDP52, whereas it can still increase the LC3Ⅱ/Ⅰ protein ratio and promote the depletion of OPTN protein which indicated the enhancement of autophagy. Collectively, the results of this study imply that Rg_1 can promote autophagy of PC12 cells injured by Aβ, and may reduce Aβ-induced mitochondrial damage by promoting PINK1-dependent mitophagy, which may be one of the key mechanisms of its neuroprotective effect.
Amyloid beta-Peptides/toxicity*
;
Animals
;
Ginsenosides/pharmacology*
;
Humans
;
Mitophagy/physiology*
;
PC12 Cells
;
Protein Kinases/metabolism*
;
Rats
;
Ubiquitin-Protein Ligases/metabolism*

Result Analysis
Print
Save
E-mail