1.Chidamide-BEAC plus autologous stem cell transplantation in high-risk non-Hodgkin lymphoma: a phase II clinical trial.
Yi XIA ; Li WANG ; Kaiyang DING ; Jiazhu WU ; Hua YIN ; Maogui HU ; Haorui SHEN ; Jinhua LIANG ; Ruize CHEN ; Yue LI ; Huayuan ZHU ; Jianyong LI ; Wei XU
Chinese Medical Journal 2023;136(12):1491-1493
2.Study on the Regulation of Chidamide on CD8+T Cells in T-cell Acute Lymphoblastic Leukemia.
Miao-Ming YAN ; Zhao-Xuan LI ; Chong CHEN ; Wei ZHANG ; Dao-Bin ZHOU
Journal of Experimental Hematology 2023;31(1):71-75
OBJECTIVE:
To explore the regulatory effect of chidamide on CD8+ T cells in T-cell acute lymphoblastic leukemia.
METHODS:
The expression levels of CXCL9 and CXCL3 mRNA in Jurkat cells, lymphocytes treated with chidamide and lymphocytes co-cultured with chidamide-treated Jurkat cells were detected by fluorescence quantitative PCR. The proportion of CD8+ T cells in lymphocytes treated with chidamide and lymphocytes co-cultured with chidamide-treated Jurkat cells was determined by flow cytometry.
RESULTS:
Chidamide upregulated CXCL9 mRNA expression in Jurkat cell line in a dose-dependent manner (r=0.950). The mRNA expression of CXCL9 in chidamide 5 μmol/L group was 164 times higher than that in control group. Chidamide upregulated CXCL9 mRNA expression in lymphocytes, but the up-regulated level was significantly lower than that in Jurkat cell line treated with the same concentration of chidamide. Co-culture with chidamide treated Jurkat cells upregulated the proportion of CD8+ T cells in lymphocytes.
CONCLUSION
In T-cell acute lymphoblastic leukemia, chidamide may increase the concentration of CXCL9 in the tumor microenvironment by up-regulating the expression of CXCL9 in tumor cells, leading to an increase in the number of CD8+ T cells.
Humans
;
CD8-Positive T-Lymphocytes
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma
;
Aminopyridines/pharmacology*
;
Jurkat Cells
;
RNA, Messenger
;
Cell Line, Tumor
;
Apoptosis
;
Tumor Microenvironment
4.To compare the efficacy and incidence of severe hematological adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia.
Xiao Shuai ZHANG ; Bing Cheng LIU ; Xin DU ; Yan Li ZHANG ; Na XU ; Xiao Li LIU ; Wei Ming LI ; Hai LIN ; Rong LIANG ; Chun Yan CHEN ; Jian HUANG ; Yun Fan YANG ; Huan Ling ZHU ; Ling PAN ; Xiao Dong WANG ; Gui Hui LI ; Zhuo Gang LIU ; Yan Qing ZHANG ; Zhen Fang LIU ; Jian Da HU ; Chun Shui LIU ; Fei LI ; Wei YANG ; Li MENG ; Yan Qiu HAN ; Li E LIN ; Zhen Yu ZHAO ; Chuan Qing TU ; Cai Feng ZHENG ; Yan Liang BAI ; Ze Ping ZHOU ; Su Ning CHEN ; Hui Ying QIU ; Li Jie YANG ; Xiu Li SUN ; Hui SUN ; Li ZHOU ; Ze Lin LIU ; Dan Yu WANG ; Jian Xin GUO ; Li Ping PANG ; Qing Shu ZENG ; Xiao Hui SUO ; Wei Hua ZHANG ; Yuan Jun ZHENG ; Qian JIANG
Chinese Journal of Hematology 2023;44(9):728-736
Objective: To analyze and compare therapy responses, outcomes, and incidence of severe hematologic adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia (CML) . Methods: Data of patients with chronic phase CML diagnosed between January 2006 and November 2022 from 76 centers, aged ≥18 years, and received initial flumatinib or imatinib therapy within 6 months after diagnosis in China were retrospectively interrogated. Propensity score matching (PSM) analysis was performed to reduce the bias of the initial TKI selection, and the therapy responses and outcomes of patients receiving initial flumatinib or imatinib therapy were compared. Results: A total of 4 833 adult patients with CML receiving initial imatinib (n=4 380) or flumatinib (n=453) therapy were included in the study. In the imatinib cohort, the median follow-up time was 54 [interquartile range (IQR), 31-85] months, and the 7-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.2%, 88.4%, 78.3%, and 63.0%, respectively. The 7-year FFS, PFS, and OS rates were 71.8%, 93.0%, and 96.9%, respectively. With the median follow-up of 18 (IQR, 13-25) months in the flumatinib cohort, the 2-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.4%, 86.5%, 58.4%, and 46.6%, respectively. The 2-year FFS, PFS, and OS rates were 80.1%, 95.0%, and 99.5%, respectively. The PSM analysis indicated that patients receiving initial flumatinib therapy had significantly higher cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) and higher probabilities of FFS than those receiving the initial imatinib therapy (all P<0.001), whereas the PFS (P=0.230) and OS (P=0.268) were comparable between the two cohorts. The incidence of severe hematologic adverse events (grade≥Ⅲ) was comparable in the two cohorts. Conclusion: Patients receiving initial flumatinib therapy had higher cumulative incidences of therapy responses and higher probability of FFS than those receiving initial imatinib therapy, whereas the incidence of severe hematologic adverse events was comparable between the two cohorts.
Adult
;
Humans
;
Adolescent
;
Imatinib Mesylate/adverse effects*
;
Incidence
;
Antineoplastic Agents/adverse effects*
;
Retrospective Studies
;
Pyrimidines/adverse effects*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Treatment Outcome
;
Benzamides/adverse effects*
;
Leukemia, Myeloid, Chronic-Phase/drug therapy*
;
Aminopyridines/therapeutic use*
;
Protein Kinase Inhibitors/therapeutic use*
5.Chinese Expert Consensus on Management of Special Adverse Effects Associated with Lorlatinib.
Qing ZHOU ; Shun LU ; Yong LI ; Fujun JIA ; Guanjun LI ; Zhen HONG ; You LU ; Yun FAN ; Jianying ZHOU ; Zhe LIU ; Juan LI ; Yi-Long WU
Chinese Journal of Lung Cancer 2022;25(8):555-566
Anaplastic lymphoma kinase (ALK) fusions represent the second most common oncogenic driver mutation in non-small cell lung cancer (NSCLC). As the new class of 3rd generation of ALK tyrosine kinase inhibitor (TKI), lorlatinib has shown robust potency and brain-penetrant clinical activity against a wide spectrum of multiple resistance mutations within the ALK domain detected during crizotinib and 2nd generation ALK TKI treatment. Lorlatinib is generally well-tolerated with unique adverse drug reaction/adverse event, including hyperlipidemia and central nervous system effects, which are mostly mild to moderate severity and manageable through dosage modifications and/or standard medical intervention. For advanced NSCLC with ALK positivity, patients should be evaluated for baseline characteristics and pre-existing medication, informed of the potential toxicities, and periodically monitored to balance benefits and risks. Moreover, a multidisciplinary group of experts is essential to establish a comprehensive diagnostic and therapeutic strategy.
.
Aminopyridines
;
Carcinoma, Non-Small-Cell Lung/pathology*
;
China
;
Consensus
;
Drug Resistance, Neoplasm/genetics*
;
Drug-Related Side Effects and Adverse Reactions/drug therapy*
;
Humans
;
Lactams
;
Lactams, Macrocyclic/adverse effects*
;
Lung Neoplasms/pathology*
;
Protein Kinase Inhibitors/adverse effects*
;
Protein-Tyrosine Kinases/genetics*
;
Pyrazoles
6.HDAC inhibitor chidamide synergizes with venetoclax to inhibit the growth of diffuse large B-cell lymphoma via down-regulation of MYC, BCL2, and TP53 expression.
Cancan LUO ; Tiantian YU ; Ken H YOUNG ; Li YU
Journal of Zhejiang University. Science. B 2022;23(8):666-681
Diffuse large B-cell lymphoma (DLBCL) is an aggressive type of non-Hodgkin's lymphoma. A total of 10%‒15% of DLBCL cases are associated with myelocytomatosis viral oncogene homolog(MYC) and/or B-cell lymphoma-2 (BCL2) translocation or amplification. BCL2 inhibitors have potent anti-tumor effects in DLBCL; however, resistance can be acquired through up-regulation of alternative anti-apoptotic proteins. The histone deacetylase (HDAC) inhibitor chidamide can induce BIM expression, leading to apoptosis of lymphoma cells with good efficacy in refractory recurrent DLBCL. In this study, the synergistic mechanism of chidamide and venetoclax in DLBCL was determined through in vitro and in vivo models. We found that combination therapy significantly reduced the protein levels of MYC, TP53, and BCL2 in activated apoptotic-related pathways in DLBCL cells by increasing BIM levels and inducing cell apoptosis. Moreover, combination therapy regulated expression of multiple transcriptomes in DLBCL cells, involving apoptosis, cell cycle, phosphorylation, and other biological processes, and significantly inhibited tumor growth in DLBCL-bearing xenograft mice. Taken together, these findings verify the in vivo therapeutic potential of chidamide and venetoclax combination therapy in DLBCL, warranting pre-clinical trials for patients with DLBCL.
Aminopyridines
;
Animals
;
Benzamides
;
Biological Phenomena
;
Bridged Bicyclo Compounds, Heterocyclic
;
Down-Regulation
;
Histone Deacetylase Inhibitors/therapeutic use*
;
Humans
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
Mice
;
Neoplasm Recurrence, Local
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Proto-Oncogene Proteins c-myc/therapeutic use*
;
Sulfonamides
;
Tumor Suppressor Protein p53/metabolism*
7.Chidamide inhibits the NOTCH1-MYC signaling axis in T-cell acute lymphoblastic leukemia.
Mengping XI ; Shanshan GUO ; Caicike BAYIN ; Lijun PENG ; Florent CHUFFART ; Ekaterina BOUROVA-FLIN ; Sophie ROUSSEAUX ; Saadi KHOCHBIN ; Jian-Qing MI ; Jin WANG
Frontiers of Medicine 2022;16(3):442-458
T-cell acute lymphoblastic leukemia (T-ALL) is one of the most dangerous hematological malignancies, with high tumor heterogeneity and poor prognosis. More than 60% of T-ALL patients carry NOTCH1 gene mutations, leading to abnormal expression of downstream target genes and aberrant activation of various signaling pathways. We found that chidamide, an HDAC inhibitor, exerts an antitumor effect on T-ALL cell lines and primary cells including an anti-NOTCH1 activity. In particular, chidamide inhibits the NOTCH1-MYC signaling axis by down-regulating the level of the intracellular form of NOTCH1 (NICD1) as well as MYC, partly through their ubiquitination and degradation by the proteasome pathway. We also report here the preliminary results of our clinical trial supporting that a treatment by chidamide reduces minimal residual disease (MRD) in patients and is well tolerated. Our results highlight the effectiveness and safety of chidamide in the treatment of T-ALL patients, including those with NOTCH1 mutations and open the way to a new therapeutic strategy for these patients.
Aminopyridines
;
Benzamides
;
Cell Line, Tumor
;
Humans
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism*
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Receptor, Notch1/metabolism*
;
Signal Transduction
;
T-Lymphocytes/metabolism*
9.Expert consensus on the management of adverse events of CDK4/6 inhibitors in breast cancer.
Rui GE ; Bi Yun WANG ; Ze Fei JIANG
Chinese Journal of Oncology 2022;44(12):1296-1304
Cyclin-dependent kinases 4/6 (CDK4/6) inhibitors are anti-tumor agents for the treatment of hormone receptor-positive breast cancer. Palbociclib, abemaciclib and dalpiciclib have been approved for the treatment of breast cancer in China. Common adverse effects of CDK4/6 inhibitors include bone marrow suppression, gastrointestinal toxicities, liver dysfunction, and skin or subcutaneous tissue adverse reactions (AEs). The Breast Cancer Expert Group of Chinese Society of Clinical Oncology (CSCO) summarized the incidence, clinical manifestations, and grading of the AEs. This expert consensus reports measures of AE management on the basis of experience of clinical practice and the latest advances worldwide, aiming to guide clinical practice by the way of managing AE and help to choose the best treatment regimen.
Female
;
Humans
;
Aminopyridines/adverse effects*
;
Antineoplastic Agents/adverse effects*
;
Breast Neoplasms/drug therapy*
;
Consensus
;
Cyclin-Dependent Kinase 4/antagonists & inhibitors*
;
Protein Kinase Inhibitors/adverse effects*
;
Cyclin-Dependent Kinase 6/antagonists & inhibitors*
10.The Effects of Chidamide Combined with Anti-myeloma Drugs on the Proliferation and Apoptosis of Myeloma Cells.
Yong LIU ; Yun XU ; Yan XIE ; Guang-Hua CHEN ; Wei LIU ; Wei-Qin YAO ; Shuang YAN ; Ling-Zhi YAN ; De-Pei WU ; Cheng-Cheng FU
Journal of Experimental Hematology 2021;29(4):1187-1194
OBJECTIVE:
To investigate the effects of chidamide combined with anti-myeloma drugs on the proliferation and apoptosis of myeloma cells.
METHODS:
The proliferation inhibition of the cells was detected by CCK-8 method, and flow cytometry was used to detected the apoptosis of the cells.
RESULTS:
Chidamide could inhibit the proliferation of myeloma cells and promote the apoptosis of primary myeloma plasma cells in a time- and dose-dependent manner (P<0.05). In NCI-H929 cell line, chidamide combined with low-dose bortezomib and lenalidomide showed synergistic effect, while combined with dexamethasone and pomalidomide showed additive effect. In MM.1s cell line, chidamide combined with bortezomib, dexamethasone, lenalidomide and pomalidomide all showed synergistic effects.
CONCLUSION
Chidamide inhibits proliferation of myeloma cells in a time- and dose-dependent manner and promotes apoptosis of primary myeloma plasma cells. Furthermore, it can enhance the inhibitory effect of anti-myeloma drugs.
Aminopyridines
;
Apoptosis
;
Benzamides
;
Bortezomib/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Humans
;
Multiple Myeloma
;
Pharmaceutical Preparations

Result Analysis
Print
Save
E-mail