1.Dehydrodiisoeugenol resists H1N1 virus infection via TFEB/autophagy-lysosome pathway.
Zhe LIU ; Jun-Liang LI ; Yi-Xiang ZHOU ; Xia LIU ; Yan-Li YU ; Zheng LUO ; Yao WANG ; Xin JIA
China Journal of Chinese Materia Medica 2025;50(6):1650-1658
The present study delves into the cellular mechanisms underlying the antiviral effects of dehydrodiisoeugenol(DEH) by focusing on the transcription factor EB(TFEB)/autophagy-lysosome pathway. The cell counting kit-8(CCK-8) was utilized to assess the impact of DEH on the viability of human non-small cell lung cancer cells(A549). The inhibitory effect of DEH on the replication of influenza A virus(H1N1) was determined by real-time quantitative polymerase chain reaction(RT-qPCR). Western blot was employed to evaluate the influence of DEH on the expression level of the H1N1 virus nucleoprotein(NP). The effect of DEH on the fluorescence intensity of NP was examined by the immunofluorescence assay. A mouse model of H1N1 virus infection was established via nasal inhalation to evaluate the therapeutic efficacy of 30 mg·kg~(-1) DEH on H1N1 virus infection. RNA sequencing(RNA-seq) was performed for the transcriptional profiling of mouse embryonic fibroblasts(MEFs) in response to DEH. The fluorescent protein-tagged microtubule-associated protein 1 light chain 3(LC3) was used to assess the autophagy induced by DEH. Western blot was employed to determine the effect of DEH on the autophagy flux of LC3Ⅱ/LC3Ⅰ under viral infection conditions. Lastly, the role of TFEB expression in the inhibition of DEH against H1N1 infection was evaluated in immortalized bone marrow-derived macrophage(iBMDM), both wild-type and TFEB knockout. The results revealed that the half-maximal inhibitory concentration(IC_(50)) of DEH for A549 cells was(87.17±0.247)μmol·L~(-1), and DEH inhibited H1N1 virus replication in a dose-dependent manner in vitro. Compared with the H1N1 virus-infected mouse model, the treatment with DEH significantly improved the body weights and survival time of mice. DEH induced LC3 aggregation, and the absence of TFEB expression in iBMDM markedly limited the ability of DEH to counteract H1N1 virus replication. In conclusion, DEH exerts its inhibitory activity against H1N1 infection by activating the TFEB/autophagy-lysosome pathway.
Influenza A Virus, H1N1 Subtype/genetics*
;
Animals
;
Autophagy/drug effects*
;
Humans
;
Mice
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Influenza, Human/metabolism*
;
Lysosomes/metabolism*
;
Orthomyxoviridae Infections/genetics*
;
Eugenol/pharmacology*
;
Antiviral Agents/pharmacology*
;
Virus Replication/drug effects*
;
A549 Cells
;
Male
2.Mechanisms of puerarin-mediated lipid modulation to enhance glucose-lowering effects via hepatic ChREBP/PPARα/PPARγ in vitro.
Can CUI ; Han-Yue XIAO ; Li-Ke YAN ; Zhong-Hua XU ; Wei-Hua LIU ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(14):3951-3961
This study aims to investigate the in vitro mechanisms underlying the beneficial effects of puerarin on hepatic insulin resistance(IR) based on the carbohydrate response element-binding protein(ChREBP)/peroxisome proliferator-activated receptor(PPAR)α/PPARγ axis involved in glucose and lipid metabolism. An IR-HepG2 cell model was established by treating cells with dexamethasone for 48 h, and the cells were then treated with 10, 20, and 40 μmol·L~(-1) puerarin for 24 h. Glucose levels and output in the extracellular fluid were measured by the glucose oxidase method, while cell viability was assessed by the cell counting kit-8(CCK-8) assay. The adenosine triphosphate(ATP) content and glycogen synthesis were evaluated through chemiluminescence and periodic acid-Schiff staining, respectively. Western blot was employed to quantify the protein levels of forkhead box protein O1(FoxO1), phosphorylated forkhead box protein O1 [p-FoxO1(Ser256)], glucagon, phosphofructokinase, liver type(PFKL), pyruvate kinase L-R(PKLR), pyruvate dehydrogenase complex 1(PDHA1), insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase p85(PI3KR1), phosphorylated protein kinase B [p-Akt(Thr308)], glycogen synthase(GYS), glycogen phosphorylase, liver type(PYGL), adiponectin(ADPN), ChREBP, PPARα, and PPARγ. Additionally, the protein levels of acetyl-CoA carboxylase 1(ACC1), phosphorylated ATP citrate lyase [p-ACLY(Ser455)], sterol regulatory element binding protein 1c(SREBP-1c), peroxisome proliferator-activated receptor gamma coactivator 1α(PGC1α), carnitine palmitoyltransferase 1α(CPT1α), and glucagon receptor(GCGR) were also determined. Immunofluorescence was employed to visualize the expression and nuclear location of ChREBP/PPARα/PPARγ. Furthermore, quantitative PCR with the antagonists GW6471 and GW9662 was employed to assess Pparα, Pparγ, and Chrebp. The findings indicated that puerarin effectively reduced both the glucose level and glucose output in the extracellular fluid of IR-HepG2 cells without obvious effect on the cell viability, and it increased intracellular glycogen and ATP levels. Puerarin down-regulated the protein levels of FoxO1 and glucagon while up-regulating the protein levels of p-FoxO1(Ser256), PFKL, PKLR, PDHA1, IRS2, PI3KR1, p-Akt(Thr308), GYS, PYGL, ADPN, ACC1, SREBP-1c, p-ACLY(Ser455), PGC1α, CPT1α, and GCGR in IR-HepG2 cells. Furthermore, puerarin up-regulated both the mRNA and protein levels of ChREBP, PPARα, and PPARγ and promoted the translocation into the nucleus. GW6471 was observed to down-regulate the expression of Pparα while up-regulating the expression of Chrebp and Pparγ. GW9662 down-regulated the expression of Pparγ while up-regulating the expression of Pparα, with no significant effect on Chrebp. In summary, puerarin activated the hepatic ChREBP/PPARα/PPARγ axis, thereby coordinating the glucose and lipid metabolism, promoting the conversion of glucose to lipids to exert the blood glucose-lowering effect.
Isoflavones/pharmacology*
;
Humans
;
PPAR gamma/genetics*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Lipid Metabolism/drug effects*
;
PPAR alpha/genetics*
;
Liver/drug effects*
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Insulin Resistance
3.Change of plasma level of valine and its relationship with developmental quotient in children with autism.
Xinjie XU ; Xiaoe CAI ; Fanchao MENG ; Bo LONG ; Xin YOU ; Rong ZHANG
Journal of Peking University(Health Sciences) 2025;57(2):277-283
OBJECTIVE:
To compare the differences of plasma valine level between autistic and healthy children, and to explore the relationship between plasma valine level and developmental quotient in children with autism.
METHODS:
In this study, a total of 29 autistic children and 30 typically developing children of the same age range were recruited as the autistic group and the control group. The childhood autism rating scale (CARS) was used to assess autistic core symptoms and severity in the autistic children. Children's developmental quotient was evaluated by Gesell developmental schedules (GDS), and plasma valine level was measured by high performance liquid chromatography-tandem mass spectrometry. The correlation between plasma valine level and developmental quotient scores in the autistic group was analyzed.
RESULTS:
The plasma level of valine in the autism group was significantly lower than in the control group (P < 0.05). Children in the autism group got significantly lower scores in the adaption, gross motor, fine motor, language function and personal/social function subscales in GDS than in the control group (P < 0.000 1). Plasma valine level in the autism group showed significant positive correlations with scores of the fine motor (r=0.441, P < 0.05) and personal/social function (r=0.437, P < 0.05) subscales in GDS, but showed no significant correlations with scores of the adaption, gross motor and language function subscales in GDS (P>0.05). According to the criteria of CARS, children in the autism group were subdivided into the mild to moderate subgroup and the severe subgroup based on the severity of the autistic symptoms. Compared with children in the mild to moderate subgroup, children in the severe subgroup got significantly lower scores in the adaption, fine motor, language function and personal/social function subscales in GDS (P < 0.05), while there was no significant difference between the two subgroups in gross motor scores and plasma valine level (P>0.05).
CONCLUSION
The level of valine in plasma of autistic children is relatively lower, and there is a certain relationship between plasma valine level and the fine movement and personal/social function among children with autism.
Humans
;
Autistic Disorder/physiopathology*
;
Child
;
Male
;
Female
;
Valine/blood*
;
Child Development
;
Child, Preschool
;
Case-Control Studies
4.Metabolic engineering of Escherichia coli for efficient production of L-valine.
Guomin LI ; Sihan YAN ; Jiajia YOU ; Zhiming RAO
Chinese Journal of Biotechnology 2025;41(9):3473-3486
L-valine is an important branched-chain amino acid widely used in the food, pharmaceutical, and feed industries. Microbial fermentation has become the primary production method for L-valine. However, current industrial production still faces issues such as inefficient carbon flux utilization, imbalance in cofactor supply and demand, and suboptimal fermentation processes, which limit the efficient synthesis of L-valine. To further enhance the production performance of L-valine, In this study, metabolic engineering was conducted for a previously constructed Escherichia coli strain with a high yield of L-valine to optimize carbon flux distribution and balance cofactor consumption. Dual-phase oxygen-controlled fermentation was carried out to enhance L-valine production. Firstly, to address the pyruvate loss, we knocked out multiple competing pathway genes (ldhA, poxB, pflB, frdA, and pta), which resulted in a 48% increase in flask yield of the constructed strain VL-04. Next, we optimized the cofactor supply and demand balance by replacing ilvE with bcd (NADH-preferential) from Bacillus subtilis to construct the strain VL-06, which achieved a flask yield of 22.80 g/L, a further improvement of 25.8%. Subsequently, the fermentation conditions of VL-06 were optimized in a 5 L bioreactor with dual-phase oxygen-controlled fermentation. After optimization, the L-valine production reached 86.44 g/L in 26 h, with a glucose-to-acid conversion rate of 44.08% and a production intensity of 3.32 g/(L·h). This study not only shortens the time for L-valine production but also improves the economic efficiency, providing insights for similar fermentation processes employing dual-phase oxygen control.
Metabolic Engineering/methods*
;
Escherichia coli/genetics*
;
Valine/biosynthesis*
;
Fermentation
;
Bacillus subtilis/genetics*
5.Metabolic engineering of Corynebacterium glutamicum for L-valine production.
Hailang YU ; Jia LIU ; Xiaomin LI ; Liming LIU
Chinese Journal of Biotechnology 2025;41(9):3504-3520
L-valine is an important essential branched-chain amino acid widely used in industries such as feed, pharmaceuticals, and food. In order to further enhance the production performance of L-valine, this study systematically engineered the metabolism of a Corynebacterium glutamicum strain, preserved in the laboratory, which is capable of producing L-valine. First, strain VH-9 was obtained by enhancing the precursor supply, synthesis pathway, and transport system of L-valine. In a 5 L fermenter, the titer, yield, and productivity of L-valine were 76.6 g/L, 0.45 g/g, and 2.39 g/(L·h), respectively. Furthermore, strain VH-18 was obtained by enhancing the uptake of substrate glucose and balancing energy supply to reduce succinate accumulation, with the titer, yield, and productivity of L-valine increased to 82.7 g/L, 0.52 g/g, and 2.58 g/(L·h), respectively. After optimization of fermentation conditions, the titer, yield, and productivity of L-valine in strain VH-18 were further improved to 88.7 g/L, 0.54 g/g, and 2.77 g/(L·h), respectively. This study has achieved the high-efficiency production of L-valine through a systems metabolic engineering strategy.
Corynebacterium glutamicum/genetics*
;
Metabolic Engineering/methods*
;
Valine/biosynthesis*
;
Fermentation
;
Glucose/metabolism*
6.Role of post-translational modification of basic leucine zipper transcription factors in response to abiotic stresses in plants.
Ying LI ; Weidi ZHAO ; Jinghua YANG ; Jiaqi LI ; Songyang HAN ; Yuekun REN ; Changhong GUO
Chinese Journal of Biotechnology 2024;40(1):53-62
Abiotic stresses substantially affect the growth and development of plants. Plants have evolved multiple strategies to cope with the environmental stresses, among which transcription factors play an important role in regulating the tolerance to abiotic stresses. Basic leucine zipper transcription factors (bZIP) are one of the largest gene families. The stability and activity of bZIP transcription factors could be regulated by different post-translational modifications (PTMs) in response to various intracellular or extracellular stresses. This paper introduces the structural feature and classification of bZIP transcription factors, followed by summarizing the PTMs of bZIP transcription factors, such as phosphorylation, ubiquitination and small ubiquitin-like modifier (SUMO) modification, in response to abiotic stresses. In addition, future perspectives were prospected, which may facilitate cultivating excellent stress-resistant crop varieties by regulating the PTMs of bZIP transcription factors.
Basic-Leucine Zipper Transcription Factors/genetics*
;
Protein Processing, Post-Translational
;
Phosphorylation
;
Transcription Factors/genetics*
;
Stress, Physiological/genetics*
7.Efficacy and safety of sacubitril/valsartan in adverse cardiovascular event reduction and hypertension control among Asians: A systematic review and meta-analysis of randomized controlled trials
Patrick Vera Cruz ; Wisdom Ang ; Jose Bernardo Calatrava
Philippine Journal of Cardiology 2024;52(1):33-44
BACKGROUND:
Sacubitril/valsartan is currently a standard medication in the treatment of reduced ejection fraction heart failure (HFrEF), and studies have also shown its efficacy for controlling hypertension. However, its efficacy varies between populations, and current recommendations are predominantly based on non Asian data. Hence, this study synthesizes the available evidence to determine its overall efficacy and safety among Asians.
METHODS:
A systematic search through PubMed, ScienceDirect, Cochrane, HERDIN PLUS, and ClinicalTrials.gov was done to include randomized controlled trials with Asian data comparing sacubitril/valsartan against an active control. The Cochrane Risk of Bias 2.0 was used to assess each article for bias. Forest plots in fixed-effects model for major adverse cardiovascular events (MACEs), hypertension control, and safety were created using RevMan 5.4.
RESULTS AND DISCUSSION:
Ten articles with an overall low risk of bias were included involving 6120 Asians. Sacubitril/valsartan showed better hypertension control against conventional angiotensin blocker (odds ratio [OR], 1.63; confidence interval [CI], 1.38–1.92; I2 = 7%). However, MACE reduction was not significant in HFrEF (hazard ratio, 0.89; CI, 0.73–1.08; I2 = 0%) or acute myocardial infarction (hazard ratio, 0.90; CI, 0.65–1.24; I2 = 0%). Safety was comparable to conventional angiotensin-converting enzyme inhibitors angiotensin receptor blocker (ARB) with a severe adverse event OR of 0.81 (CI, 0.44–1.50; I2 = 38%) and nonsevere adverse event OR of 1.09 (CI, 0.88–1.35; I2 = 44%). These results implicate the nee for efficacy studies focused on Asians, reassessment of the strength of recommendations in the treatment of heart failure, and consideration of sacubitril/valsartan as a treatment option for hypertension.
CONCLUSION
Among Asians, better hypertension control is seen with LCZ696 than conventional ARB. However, MACE reduction in HFrEF or acute myocardial infarction is insignificant, although there is a trend toward benefit. Finally, safety is comparable to conventional angiotensin-converting enzyme inhibitors/ARBs.\.
Asian
;
Heart Failure
;
Hypertension
;
LCZ696
;
sacubitril and valsartan sodium hydrate drug combination
8.Research progress on the mechanism of leucine regulation of protein synthesis in aging skeletal muscle through LAT1.
Yu KE ; Zhi-Qiang DAI ; Ying YANG ; Hui-Wen WU ; Yan ZHAO ; Hua-Yu SHANG ; Zhi XIA
Acta Physiologica Sinica 2024;76(6):1001-1018
Age-related sarcopenia is a degenerative disease characterized by the decline in skeletal muscle mass and function during the aging process. Anabolic resistance, which refers to the diminished response of skeletal muscle to anabolic stimulation from leucine and other nutrients, is a significant contributing factor to its development. Recent studies have suggested that large neutral amino acid-transporter 1 (LAT1/SLC7A5) may play an important role in enhancing leucine's effects on protein synthesis in aging skeletal muscle. In this paper, the structure and function of LAT1 and its key molecules regulating aging skeletal muscle protein synthesis were reviewed, and the potential relationship between LAT1, as a transmembrane transporter of leucine, and protein synthesis in aging skeletal muscle was analyzed. The aim is to explore new mechanisms and insights for prevention and treatment of age-related sarcopenia, and provide reference for the application of relevant targets in clinical translational medicine.
Humans
;
Leucine/metabolism*
;
Muscle, Skeletal/metabolism*
;
Aging/metabolism*
;
Large Neutral Amino Acid-Transporter 1/metabolism*
;
Protein Biosynthesis
;
Sarcopenia/metabolism*
;
Animals
;
Muscle Proteins/biosynthesis*
9.Highly efficient production of L-valine by multiplex metabolic engineering of Corynebacterium glutamicum.
Kuo ZHAO ; Jinyu CHENG ; Liang GUO ; Cong GAO ; Wei SONG ; Jing WU ; Jia LIU ; Yadi LIU ; Liming LIU ; Xiulai CHEN
Chinese Journal of Biotechnology 2023;39(8):3253-3272
As a branched chain amino acid, L-valine is widely used in the medicine and feed sectors. In this study, a microbial cell factory for efficient production of L-valine was constructed by combining various metabolic engineering strategies. First, precursor supply for L-valine biosynthesis was enhanced by strengthening the glycolysis pathway and weakening the metabolic pathway of by-products. Subsequently, the key enzyme in the L-valine synthesis pathway, acetylhydroxylate synthase, was engineered by site-directed mutation to relieve the feedback inhibition of the engineered strain. Moreover, promoter engineering was used to optimize the gene expression level of key enzymes in L-valine biosynthetic pathway. Furthermore, cofactor engineering was adopted to change the cofactor preference of acetohydroxyacid isomeroreductase and branched-chain amino acid aminotransferase from NADPH to NADH. The engineered strain C. glutamicum K020 showed a significant increase in L-valine titer, yield and productivity in 5 L fed-batch bioreactor, up to 110 g/L, 0.51 g/g and 2.29 g/(L‧h), respectively.
Valine
;
Corynebacterium glutamicum/genetics*
;
Metabolic Engineering
;
Amino Acids, Branched-Chain
;
Bioreactors
10.Genome-wide identification of bZIP family genes and screening of candidate AarbZIPs involved in terpenoid biosynthesis in Artemisia argyi.
Bo-Han CHENG ; Meng-Yue WANG ; Lan WU ; Ran-Ran GAO ; Qing-Gang YIN ; Yu-Hua SHI ; Li XIANG
China Journal of Chinese Materia Medica 2023;48(19):5181-5194
Artemisia argyi is an important medicinal and economic plant in China, with the effects of warming channels, dispersing cold, and relieving pain, inflammation, and allergy. The essential oil of this plant is rich in volatile terpenoids and widely used in moxi-bustion and healthcare products, with huge market potential. The bZIP transcription factors compose a large family in plants and are involved in the regulation of plant growth and development, stress response, and biosynthesis of secondary metabolites such as terpenoids. However, little is known about the bZIPs and their roles in A. argyi. In this study, the bZIP transcription factors in the genome of A. argyi were systematically identified, and their physicochemical properties, phylogenetic relationship, conserved motifs, and promoter-binding elements were analyzed. Candidate AarbZIP genes involved in terpenoid biosynthesis were screened out. The results showed that a total of 156 AarbZIP transcription factors were identified at the genomic level, with the lengths of 99-618 aa, the molecular weights of 11.7-67.8 kDa, and the theoretical isoelectric points of 4.56-10.16. According to the classification of bZIPs in Arabidopsis thaliana, the 156 AarbZIPs were classified into 12 subfamilies, and the members in the same subfamily had similar conserved motifs. The cis-acting elements of promoters showed that AarbZIP genes were possibly involved in light and hormonal pathways. Five AarbZIP genes that may be involved in the regulation of terpenoid biosynthesis were screened out by homologous alignment and phylogenetic analysis. The qRT-PCR results showed that the expression levels of the five AarbZIP genes varied significantly in different tissues of A. argyi. Specifically, AarbZIP29 and AarbZIP55 were highly expressed in the leaves and AarbZIP81, AarbZIP130, and AarbZIP150 in the flower buds. This study lays a foundation for the functional study of bZIP genes and their regulatory roles in the terpenoid biosynthesis in A. argyi.
Gene Expression Profiling
;
Phylogeny
;
Artemisia/genetics*
;
Basic-Leucine Zipper Transcription Factors/metabolism*
;
Terpenes
;
Gene Expression Regulation, Plant


Result Analysis
Print
Save
E-mail