1.High-level expression of anti FLAG tag antibody in plants.
Zhicheng KONG ; Xiaoran XIONG ; Chuan WU ; Weisong PAN
Chinese Journal of Biotechnology 2024;40(1):269-279
Plant bioreactor is a new production platform for expression of recombinant protein, which is one of the cores of molecular farming. In this study, the anti DYKDDDDK (FLAG) antibody was recombinantly expressed in tobacco (Nicotiana benthamiana) and purified. FLAG antibody with high affinity was obtained after immunizing mice for several times and its sequence was determined. Based on this, virus vectors expressing heavy chain (HC) and light chain (LC) inoculated into Nicotiana benthamiana leaves by using Agrobacterium-mediated delivery. Accumulation of the HC and LC was analyzed by SDS/PAGE followed by Western blotting probed with specific antibodies from 2 to 9 days postinfiltration (dpi). Accumulation of the FLAG antibody displayed at 3 dpi, and reached a maximum at 5 dpi. It was estimated that 66 mg of antibody per kilogram of fresh leaves could be obtained. After separation and purification, the antibody was concentrated to 1 mg/mL. The 1:10 000 diluted antibody can probe with 1 ng/mL FLAG fused antigen well, indicating the high affinity of the FLAG antibody produced in plants. In conclusion, the plant bioreactor is able to produce high affinity FLAG antibodies, with the characteristics of simplicity, low cost and highly added value, which contains enormous potential for the rapid and abundant biosynthesis of antibodies.
Animals
;
Mice
;
Antibodies
;
Nicotiana/genetics*
;
Agrobacterium/genetics*
;
Bioreactors
;
Blotting, Western
2.Molecular detection and phylogenetic analysis of Wolbachia infection in common mosquito species in Henan Province.
Y LIU ; D WANG ; Z HE ; D QIAN ; Y LIU ; C YANG ; D LU ; H ZHANG
Chinese Journal of Schistosomiasis Control 2023;35(4):389-393
OBJECTIVE:
To investigate the infection and genotypes of Wolbachia in common mosquito species in Henan Province, so as to provide insights into management of mosquito-borne diseases.
METHODS:
Aedes, Culex and Anopheles samples were collected from cowsheds, sheepfolds and human houses in Puyang, Nanyang City and Xuchang cities of Henan Province from July to September, 2022, and the infection of Wolbachia was detected. The 16S rDNA and wsp genes of Wolbachia were amplified and sequenced. Sequence alignment was performed using the BLAST software, and the obtained 16S rDNA gene sequence was compared with the sequence of the 16S rDNA gene in GenBank database. In addition, the phylogenetic trees were created based on 16S rDNA and wsp gene sequences using the software MEGA 11.0.
RESULTS:
A total 506 female adult mosquitoes were collected from three sampling sites in Nanyang, Xuchang City and Puyang cities from July to September, 2022. The overall detection of Wolbachia was 45.1% (228/506) in mosquitoes, with a higher detection rate in A. albopictus than in Cx. pipiens pallens [97.9% (143/146) vs. 50.6% (85/168); χ2 = 88.064, P < 0.01]. The detection of Wolbachia in Cx. pipiens pallens was higher in Xuchang City (96.8%, 62/64) than in Nanyang (15.6%, 7/45) and Puyang cities (27.1%, 16/59) (χ2 = 89.950, P < 0.01). The homologies of obtained Wolbachia 16S rDNA and wsp gene sequences were 95.3% to 100.0% and 81.7% to 99.8%. Phylogenetic analysis based on wsp gene sequences showed Wolbachia supergroups A and B in mosquito samples, with wAlbA and wMors strains in supergroup A and wPip and wAlbB strains in supergroup B. Wolbachia strain wAlbB infection was detected in A. albopictus in Puyang and Nanyang Cities, while Wolbachia strain wPip infection was identified in A. albopictus in Xuchang City. Wolbachia strain wAlbA infection was detected in Cx. pipiens pallens sampled from three cities, and one Cx. pipiens pallens was found to be infected with Wolbachia strain wMors in Nanyang City.
CONCLUSIONS
Wolbachia infection is commonly prevalent in Ae. albopictus and Cx. pipiens pallens from Henan Province, and Wolbachia strains wAlbB and wAlbA are predominant in Ae. albopictus, while wPip strain is predominant in Cx. pipiens pallens. This is the first report to present Wolbachia wMors strain infection in Cx. pipiens pallens in Henan Province.
Animals
;
Humans
;
Phylogeny
;
Wolbachia/genetics*
;
Culex/genetics*
;
Aedes/genetics*
;
DNA, Ribosomal
3.Impact of the microbiome on mosquito-borne diseases.
Huicheng SHI ; Xi YU ; Gong CHENG
Protein & Cell 2023;14(10):743-761
Mosquito-borne diseases present a significant threat to human health, with the possibility of outbreaks of new mosquito-borne diseases always looming. Unfortunately, current measures to combat these diseases such as vaccines and drugs are often either unavailable or ineffective. However, recent studies on microbiomes may reveal promising strategies to fight these diseases. In this review, we examine recent advances in our understanding of the effects of both the mosquito and vertebrate microbiomes on mosquito-borne diseases. We argue that the mosquito microbiome can have direct and indirect impacts on the transmission of these diseases, with mosquito symbiotic microorganisms, particularly Wolbachia bacteria, showing potential for controlling mosquito-borne diseases. Moreover, the skin microbiome of vertebrates plays a significant role in mosquito preferences, while the gut microbiome has an impact on the progression of mosquito-borne diseases in humans. As researchers continue to explore the role of microbiomes in mosquito-borne diseases, we highlight some promising future directions for this field. Ultimately, a better understanding of the interplay between mosquitoes, their hosts, pathogens, and the microbiomes of mosquitoes and hosts may hold the key to preventing and controlling mosquito-borne diseases.
Animals
;
Humans
;
Culicidae/microbiology*
;
Vector Borne Diseases
;
Gastrointestinal Microbiome
;
Wolbachia
4.Cloning and expression analysis of U6 promoters in Panax quinquefolius.
Jing-Xian CHEN ; Chao LU ; Guo-Xia WANG ; Chun-Ge LI ; Yu-Hua LI ; Fang-Yi SU ; Chen-Ying WANG ; Yao-Guang ZHANG
China Journal of Chinese Materia Medica 2023;48(11):2931-2939
The U6 promoter is an important element driving sgRNA transcription in the CRISPR/Cas9 system. Seven PqU6 promo-ter sequences were cloned from the gDNA of Panax quinquefolium, and the transcriptional activation ability of the seven promoters was studied. In this study, seven PqU6 promoter sequences with a length of about 1 300 bp were cloned from the adventitious roots of P. quinquefolium cultivated for 5 weeks. Bioinformatics tools were used to analyze the sequence characteristics of PqU6 promoters, and the fusion expression vectors of GUS gene driven by PqU6-P were constructed. Tobacco leaves were transformed by Agrobacterium tumefaciens-mediated method for activity detection. The seven PqU6 promoters were truncated from the 5'-end to reach 283, 287, 279, 289, 295, 289, and 283 bp, respectively. The vectors for detection of promoter activity were constructed with GUS as a reported gene and used to transform P. quinquefolium callus and tobacco leaves. The results showed that seven PqU6 promoter sequences(PqU6-1P to PqU6-7P) were cloned from the gDNA of P. quinquefolium, with the length ranged from 1 246 bp to 1 308 bp. Sequence comparison results showed that the seven PqU6 promoter sequences and the AtU6-P promoter all had USE and TATA boxes, which are essential elements affecting the transcriptional activity of the U6 promoter. The results of GUS staining and enzyme activity test showed that all the seven PqU6 promoters had transcriptional activity. The PqU6-7P with a length of 1 269 bp had the highest transcriptional activity, 1.31 times that of the positive control P-35S. When the seven PqU6 promoters were truncated from the 5'-end(PqU6-1PA to PqU6-7PA), their transcriptional activities were different in tobacco leaves and P. quinquefolium callus. The transcriptional activity of PqU6-7PA promoter(283 bp) was 1.59 times that of AtU6-P promoter(292 bp) when the recipient material was P. quinquefolium callus. The findings provide more ideal endogenous U6 promoters for CRISPR/Cas9 technology in ginseng and other medicinal plants.
Panax/genetics*
;
Promoter Regions, Genetic
;
Agrobacterium tumefaciens/genetics*
;
Computational Biology
;
Cloning, Molecular
5.A CRISPR/dCpf1-based transcriptional repression system for Gluconobacter oxydans.
Yutong YANG ; Ning LI ; Jingwen ZHOU ; Jian CHEN
Chinese Journal of Biotechnology 2022;38(2):719-736
Gluconobacter oxydans are widely used in industrial due to its ability of oxidizing carbohydrate rapidly. However, the limited gene manipulation methods and less of efficient gene editing tools impose restrictions on its application in industrial production. In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been widely used in genome editing and transcriptional regulation which improves the efficiency of genome editing greatly. Here we constructed a CRISPR/dCpf1-mediated gene transcriptional repression system, the expression of a nuclease inactivation Cpf1 protein (dCpf1) in Gluconobacter oxydans together with a 19 nt direct repeats showed effective repression in gene transcription. This system in single gene repression had strong effect and the relative repression level had been increased to 97.9%. While it could be applied in multiplex gene repression which showed strong repression ability at the same time. Furthermore, this system was used in the metabolic pathway of L-sorbose and the regulatory of respiratory chain. The development of CRISPR transcriptional repression system effectively covered the shortage of current gene regulation methods in G. oxydans and provided an efficient gene manipulation tool for metabolic engineering modification in G. oxydans.
CRISPR-Cas Systems/genetics*
;
Clustered Regularly Interspaced Short Palindromic Repeats/genetics*
;
Gene Editing
;
Gene Expression
;
Gluconobacter oxydans/genetics*
;
Metabolic Engineering
6.Regulating the structure of bacterial cellulose by altering the expression of bcsD using CRISPR/dCas9.
Longhui HUANG ; Xuejing LI ; Xuewen SUN ; Xu WANG ; Yitong WANG ; Shiru JIA ; Cheng ZHONG
Chinese Journal of Biotechnology 2022;38(2):772-779
Gluconacetobacter xylinus is a primary strain producing bacterial cellulose (BC). In G. xylinus, BcsD is a subunit of cellulose synthase and is participated in the assembly process of BC. A series of G. xylinus with different expression levels of the bcsD gene were obtained by using the CRISPR/dCas9 technique. Analysis of the structural characteristics of BC showed that the crystallinity and porosity of BC changed with the expression of bcsD. The porosity varied from 59.95%-84.05%, and the crystallinity varied from 74.26%-93.75%, while the yield of BC did not decrease significantly upon changing the expression levels of bcsD. The results showed that the porosity of bacterial cellulose significantly increased, while the crystallinity was positively correlated with the expression of bcsD, when the expression level of bcsD was below 55.34%. By altering the expression level of the bcsD gene, obtaining BC with different structures but stable yield through a one-step fermentation of G. xylinus was achieved.
Cellulose/chemistry*
;
Clustered Regularly Interspaced Short Palindromic Repeats
;
Fermentation
;
Gluconacetobacter xylinus/metabolism*
7.Development of an LB cloning system and its application in expression of fusion genes in Sphingomonas sp. WG.
Han XUE ; Hui LI ; Mengqi CHEN ; Zaimei ZHANG ; Zhongrui GUO ; Hu ZHU ; Jiqian WANG ; Yawei SUN
Chinese Journal of Biotechnology 2022;38(4):1576-1588
In order to overcome the challenges of insufficient restriction enzyme sites, and construct a fusion-expression vector with flexible fusion direction, we designed an LB cloning system based on the type IIS and type IIT restriction enzymes LguⅠ and BbvCⅠ. The LB cloning system is constructed by inserting the LB fragment (GCTCTTCCTCAGC) into the multiple cloning site region of the broad-host plasmid pBBR1MCS-3 using PCR. The LB fragment contains partially overlapped recognition sites of LguⅠ and BbvCⅠ. Therefore, the same non-palindromic sequence will be generated by these two restriction endonucleases digestion. This feature can be used to quickly and flexibly insert multiple genes into the expression vector in a stepwise and directed way. In order to verify the efficacy of the cloning system, two glycosyltransferase genes welB and welK of Sphingomonas sp. WG were consecutively fused to the LB cloning vector, and the recombinant plasmid was transferred into Sphingomonas sp. WG by triparental mating. The results showed that gene fusion expression has little effect on sphingan titer, but enhanced the viscosity of sphingan. The viscosity of the sphingan produced by recombinant strain Sphingomonas sp. WG/pBBR1MCS-3-LB-welKB was 24.7% higher than that of the wild strain after fermentation for 84 h, which would be beneficial for its application. In conclusion, the application of LB cloning system were verified using Sphingomonas sp. WG. The LB cloning system may provide an efficient tool for fusion expression of target genes.
Base Sequence
;
Cloning, Molecular
;
Fermentation
;
Plasmids/genetics*
;
Sphingomonas/metabolism*
8.Expression and characterization of a novel halohydrin dehalogenase from Rhodospirillaceae bacterium.
Wenjing XU ; Zhi CHEN ; Lei CHEN ; Jinping LIN ; Dongzhi WEI
Chinese Journal of Biotechnology 2021;37(4):1298-1311
As a class of multifunctional biocatalysts, halohydrin dehalogenases are of great interest for the synthesis of chiral β-substituted alcohols and epoxides. There are less than 40 halohydrin dehalogenases with relatively clear catalytic functions, and most of them do not meet the requirements of scientific research and practical applications. Therefore, it is of great significance to excavate and identify more halohydrin dehalogenases. In the present study, a putative halohydrin dehalogenase (HHDH-Ra) from Rhodospirillaceae bacterium was expressed and its enzymatic properties were investigated. The HHDH-Ra gene was cloned into the expression host Escherichia coli BL21(DE3) and the target protein was shown to be soluble. Substrate specificity studies showed that HHDH-Ra possesses excellent specificity for 1,3-dichloro-2-propanol (1,3-DCP) and ethyl-4-chloro-3-hydroxybutyrate (CHBE). The optimum pH and temperature for HHDH-Ra with 1,3-DCP as the reaction substrate were 8.0 and 30 °C, respectively. HHDH-Ra was stable at pH 6.0-8.0 and maintained about 70% of its original activity after 100 h of treatment. The thermal stability results revealed that HHDH-Ra has a half-life of 60 h at 30 °C and 40 °C. When the temperature is increased to 50 °C, the enzyme still has a half-life of 20 h, which is much higher than that of the reported enzymes. To sum up, the novel halohydrin dehalogenase from Rhodospirillaceae bacterium possesses good temperature and pH stability as well as catalytic activity, and shows the potential to be used in the synthesis of chemical and pharmaceutical intermediates.
Escherichia coli/metabolism*
;
Hydrolases/metabolism*
;
Rhodospirillaceae
;
Substrate Specificity
9.Molecular Detection and Identification of
Hong Qing ZHAO ; Pei Pei LIU ; Feng XUE ; Miao LU ; Xin Cheng QIN ; Kun LI
Biomedical and Environmental Sciences 2021;34(12):1020-1023
10.Engineering the C4 pathway of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
Lijun WANG ; Sihan YAN ; Taowei YANG ; Meijuan XU ; Xian ZHANG ; Minglong SHAO ; Huazhong LI ; Zhiming RAO
Chinese Journal of Biotechnology 2021;37(12):4314-4328
5-aminolevulinic acid (5-ALA) plays an important role in the fields of medicine and agriculture. 5-ALA can be produced by engineered Escherichia coli and Corynebacterium glutamicum. We systematically engineered the C4 metabolic pathway of C. glutamicum to further improve its ability to produce 5-ALA. Firstly, the hemA gene encoding 5-ALA synthase (ALAS) from Rhodobacter capsulatus and Rhodopseudomonas palustris were heterologously expressed in C. glutamicum, respectively. The RphemA gene of R. palustris which showed relatively high enzyme activity was selected. Screening of the optimal ribosome binding site sequence RBS5 significantly increased the activity of RphemA. The ALAS activity of the recombinant strain reached (221.87±3.10) U/mg and 5-ALA production increased by 14.3%. Subsequently, knocking out genes encoding α-ketoglutarate dehydrogenase inhibitor protein (odhI) and succinate dehydrogenase (sdhA) increased the flux of succinyl CoA towards the production of 5-ALA. Moreover, inhibiting the expression of hemB by means of sRNA reduced the degradation of 5-ALA, while overexpressing the cysteine/O-acetylserine transporter eamA increased the output efficiency of intracellular 5-ALA. Shake flask fermentation using the engineered strain C. glutamicum 13032/∆odhI/∆sdhA-sRNAhemB- RBS5RphemA-eamA resulted in a yield of 11.90 g/L, which was 57% higher than that of the original strain. Fed-batch fermentation using the engineered strain in a 5 L fermenter produced 25.05 g/L of 5-ALA within 48 h, which is the highest reported-to-date yield of 5-ALA from glucose.
Aminolevulinic Acid/metabolism*
;
Corynebacterium glutamicum/metabolism*
;
Fermentation
;
Metabolic Engineering
;
Rhodobacter capsulatus/enzymology*
;
Rhodopseudomonas/enzymology*

Result Analysis
Print
Save
E-mail