1.Novel biallelic MCMDC2 variants were associated with meiotic arrest and nonobstructive azoospermia.
Hao-Wei BAI ; Na LI ; Yu-Xiang ZHANG ; Jia-Qiang LUO ; Ru-Hui TIAN ; Peng LI ; Yu-Hua HUANG ; Fu-Rong BAI ; Cun-Zhong DENG ; Fu-Jun ZHAO ; Ren MO ; Ning CHI ; Yu-Chuan ZHOU ; Zheng LI ; Chen-Cheng YAO ; Er-Lei ZHI
Asian Journal of Andrology 2025;27(2):268-275
Nonobstructive azoospermia (NOA), one of the most severe types of male infertility, etiology often remains unclear in most cases. Therefore, this study aimed to detect four biallelic detrimental variants (0.5%) in the minichromosome maintenance domain containing 2 ( MCMDC2 ) genes in 768 NOA patients by whole-exome sequencing (WES). Hematoxylin and eosin (H&E) demonstrated that MCMDC2 deleterious variants caused meiotic arrest in three patients (c.1360G>T, c.1956G>T, and c.685C>T) and hypospermatogenesis in one patient (c.94G>T), as further confirmed through immunofluorescence (IF) staining. The single-cell RNA sequencing data indicated that MCMDC2 was substantially expressed during spermatogenesis. The variants were confirmed as deleterious and responsible for patient infertility through bioinformatics and in vitro experimental analyses. The results revealed four MCMDC2 variants related to NOA, which contributes to the current perception of the function of MCMDC2 in male fertility and presents new perspectives on the genetic etiology of NOA.
Humans
;
Male
;
Azoospermia/genetics*
;
Meiosis/genetics*
;
Spermatogenesis/genetics*
;
Adult
;
Exome Sequencing
;
Microtubule-Associated Proteins/genetics*
;
Alleles
;
Infertility, Male/genetics*
2.Novel bi-allelic variants in DNAH10 lead to multiple morphological abnormalities of sperm flagella and male infertility.
Muhammad SHOAIB ; Muhammad ZUBAIR ; Wasim SHAH ; Meftah UDDIN ; Ansar HUSSAIN ; Ghulam MUSTAFA ; Fazal RAHIM ; Huan ZHANG ; Imtiaz ALI ; Tanveer ABBAS ; Yousaf RAZA ; Sui-Xing FAN ; Qing-Hua SHI
Asian Journal of Andrology 2025;27(4):516-523
Multiple morphological abnormalities of sperm flagella (MMAF) is a severe form of asthenoteratozoospermia, characterized by morphological abnormalities and reduced motility of sperm, causing male infertility. Although approximately 60% of MMAF cases can be explained genetically, the etiology of the remaining cases is unclear. Here, we identified two novel compound heterozygous variants in the gene, dynein axonemal heavy chain 10 ( DNAH10 ), in three patients from two unrelated Pakistani families using whole-exome sequencing (WES), including one compound heterozygous mutation ( DNAH10 : c.9409C>A [p.P3137T]; c.12946G>C [p.D4316H]) in family 1 and another compound heterozygous mutation ( DNAH10 : c.8849G>A [p.G2950D]; c.11509C>T [p.R3687W]) in family 2. All the identified variants are absent or rare in public genome databases and are predicted to have deleterious effects according to multiple bioinformatic tools. Sanger sequencing revealed that these variants follow an autosomal recessive mode of inheritance. Hematoxylin and eosin (H&E) staining revealed MMAF, including sperm head abnormalities, in the patients. In addition, immunofluorescence staining revealed loss of DNAH10 protein signals along sperm flagella. These findings broaden the spectrum of DNAH10 variants and expand understanding of the genetic basis of male infertility associated with the MMAF phenotype.
Adult
;
Humans
;
Male
;
Alleles
;
Asthenozoospermia/pathology*
;
Axonemal Dyneins/genetics*
;
Dyneins/genetics*
;
Exome Sequencing
;
Infertility, Male/pathology*
;
Mutation
;
Pakistan
;
Pedigree
;
Sperm Tail/pathology*
3.Serological and Molecular Biological Characteristics of cisAB Blood Group and Transfusion Strategies.
Si-Meng WU ; Qiao-Ni YANG ; Wa GAO ; Xiao-Shuai LI ; Qiu-Shi WANG
Journal of Experimental Hematology 2025;33(1):206-210
OBJECTIVE:
To analyze the serological and molecular biological characteristics of 5 patients with cis AB blood group, and to explore the safe transfusion strategy.
METHODS:
Serological identification of the samples' blood group was performed using anti-A, anti-B, anti-D, anti-A1, anti-H typing reagents and ABO reagent erythrocytes. Molecular biological identification of the samples' blood group was performed using PCR-SSP or gene sequencing.
RESULTS:
The serological identification results of blood group in 5 patients all showed inconsistent forward and reverse typing, presenting as A2B3 or A2Bw. ABO gene sequencing of samples 1, 2 and 3 showed 261delG in exon 6 and 467C>T, 803G>C in exon 7. The genotypes of samples 1, 2 and 3 were determined to be cisAB/O . PCR-SSP genotyping was performed on sample 4 and 5,and the results were both cisAB/O .
CONCLUSION
Patients with cisAB alleles have inconsistent serological manifestations, and genetic testing is necessary to ensure the safety and effectiveness of blood transfusion.
Humans
;
ABO Blood-Group System/genetics*
;
Blood Transfusion
;
Blood Grouping and Crossmatching
;
Genotype
;
Blood Group Antigens/genetics*
;
Alleles
;
Male
;
Female
4.Effect of the ABO Gene Variant c.917T>C on the Expression and Functional Role of B-Glycosyltransferase.
Shuang LIANG ; Fan WU ; Yan-Lian LIANG ; Tong LIU ; Li-Yan SUN ; Yu-Qing SU
Journal of Experimental Hematology 2025;33(1):269-275
OBJECTIVE:
By analyzing the correlation between genotypes and phenotypes, we explored the impact of the variant c.917T>C (p.L306P) in the ABO*B.01 allele on the expression and function of B-glycosyltransferase (GTB). This study aims to elucidate the molecular mechanisms underlying the occurrence of this subtype.
METHODS:
The study subjects included a blood donor specimen with incompatible forward and reverse ABO typing results. ABO phenotyping was determined using ABO blood group serology and GTB activity testing. Subsequently, Sanger sequencing and third-generation sequencing based on the PacBio platform were employed to sequence the ABO gene, resulting in the determination of haplotype sequences. Mutations were identified through sequence alignment. An in vitro cell expression system was established to assess the impact of the mutation site on antigen expression.
RESULTS:
The index case in this study was identified as B subtype with the allelic genotype c.917T>C in ABO*B.01/ABO*O.01.01 , which has not been previously reported. in vitro expression results revealed decreased levels of GTB expression and overall GTB activity in the mutant cells. Furthermore, the expression of the B antigen on the cell membrane was weaker in the mutant cells compared to the wild-type cells.
CONCLUSION
The p.L306P variation caused by the c.917T>C mutation in the ABO*B.01 allele may be a genetic factor contributing to the reduced expression of B antigens on the surface of red blood cells.
Humans
;
ABO Blood-Group System/genetics*
;
Alleles
;
Genotype
;
Mutation
;
Glycosyltransferases/genetics*
;
Haplotypes
;
Phenotype
5.Sequence Analysis and Confirmation of an HLA Null Allele Generated by a Base Insertion.
Zhan-Rou QUAN ; Yan-Ping ZHONG ; Liu-Mei HE ; Bing-Na YANG ; Hong-Yan ZOU
Journal of Experimental Hematology 2025;33(1):276-279
OBJECTIVE:
To confirm the sequence of a null allele HLA-C*08:127N produced by a base insertion.
METHODS:
PCR sequence-specific oligonucleotide probe (SSOP) and PCR sequence-based typing (SBT) were used for HLA routine detection, which discovered abnormal sequence maps of HLA-C in one acute myeloid leukemia patient. The sequence of the above loci was confirmed by next generation sequencing (NGS) technology.
RESULTS:
The SSOP typing result showed that HLA-C locus was C*03:04, C*08:01, while the sequence was suspected to be inserted or deleted in exon 3 by SBT, and finally confirmed by NGS as C*03:04, C*08:127N.
CONCLUSION
When base insertion produces HLA null alleles, SBT analysis software cannot provide correct results, but NGS technology can more intuitively obtain accurate HLA typing results.
Humans
;
Alleles
;
High-Throughput Nucleotide Sequencing
;
HLA-C Antigens/genetics*
;
Histocompatibility Testing
;
Polymerase Chain Reaction
;
Leukemia, Myeloid, Acute/genetics*
;
Sequence Analysis, DNA
;
Mutagenesis, Insertional
;
Exons
6.Family Studies of a New Allele of the Bel subtype (c.803G>T, p.Gly268Val).
Xiao-Li MA ; Wen-An DONG ; He-Cai YANG ; Ming-Lu GENG ; Li-Ping WANG ; Yang YU
Journal of Experimental Hematology 2025;33(2):504-510
OBJECTIVE:
To analyze the Bel subtype gene mutation and its genetic mechanism in a family line.
METHODS:
ABO blood groups were identified by serologic tests. ABO genotyping was performed by polymerase chain reaction with sequence-specific primer (PCR-SSP). Sanger sequencing was performed on exons 1-7 of the ABO gene, the flanking intronic region, and exon 7 of the single strand of the gene confirmed the mutation site location. Missense3D software was used to predict the protein structure alteration caused by this mutation.
RESULTS:
Conventional serologic tests failed to detect erythrocyte B antigen in the proband and her three family members, and only trace amounts of B antigen expression could be detected by the absorption-dispersal test. DNA analysis showed that, on the basis of the normal ABO gene, there was a G>T substitution in the position of exon 7, position 803, which resulted in the change of amino acid 268 from Gly to Val. Further single-stranded sequencing analysis showed that the mutation site was located in the B gene.
CONCLUSION
In this family line, the proband, her father, her son, and her daughter all have reduced B type glycosyltransferase activity due to the new point mutation (c.803G>T) in exon 7 of the B gene, and the B antigen can only be detected by the absorption-dispersal method, and the point mutation can be stably inherited by offspring.
Point Mutation
;
Alleles
;
ABO Blood-Group System/genetics*
;
Exons
;
Introns
;
Genotype
;
Humans
;
Male
;
Female
;
Glycosyltransferases/genetics*
7.A Preliminary Study on Genetic Polymorphism of 12 Rare Blood Group of Dongxiang Nationality in Gansu Province.
Jia-Dong DING ; Yi-Yuan WANG ; Xiao-Ping ZHANG
Journal of Experimental Hematology 2025;33(2):552-556
OBJECTIVE:
To detect the alleles of 12 blood group systems (Rh, MNS, Duffy, Kidd, Kell, Diego, Dombrock, Yt, Colton, Scianna, Lutheran and Lw) of Dongxiang ethnic group in Gansu province, and understand the characteristics of rare blood group alleles common in Dongxiang ethnic group, in order to provide a basis for safe blood transfusion and the establishment of blood group gene bank.
METHODS:
The alleles of 12 blood group systems were classified by polymerase chain reaction (PCR) in 100 people from Dongxiang ethnic group in Gansu province, and the differences of gene frequency compared to other areas in China were analyzed.
RESULTS:
The allele frequencies of Rh, MNS, and Dombrock blood group systems of Dongxiang ethnic group in Gansu province were similar to northern regions. The Duffy blood group system exhibited specificity, with frequencies lower than most southern regions as well as northern regions. There were no significant differences in Kidd, Kell and Diego blood group systems compared to other regions in China. The Lua gene frequency of Lutheran blood group system was higher than all regions in China, which might be associated with genetic variation or sample selection and size. Yt, Colton, Scianna and Lw blood group genes showed monomorphic distribution, and the genotypes were YtaYta, CoaCoa, Sc1Sc1 and LwaLwa, respectively.
CONCLUSION
Rh, MNS, Duffy, Kidd, Kell, Diego, Dombrock and Lutheran blood group systems show polymorphic distribution, while Yt, Colton, Scianna and Lw blood group systems show monomorphic distribution. The distribution of blood group genes among Dongxiang ethnic group in Gansu province has its own specificity.
Humans
;
China/ethnology*
;
Polymorphism, Genetic
;
Blood Group Antigens/genetics*
;
Gene Frequency
;
Alleles
;
Asian People/genetics*
;
Ethnicity/genetics*
;
Genotype
;
Female
8.Identification of the Novel Allele HLA-B*54:01:11 Detected by NGS Using the Third Generation Sequencing Technology.
Nan-Ying CHEN ; Yi-Zheng HE ; Wen-Wen PI ; Qi LI ; Li-Na DONG ; Wei ZHANG
Journal of Experimental Hematology 2025;33(2):565-568
OBJECTIVE:
To distinguish the ambiguous genotyping results of human leukocyte antigen (HLA), identify a novel HLA-B allele and analyze the nucleotide sequence.
METHODS:
A total of 2 076 umbilical core blood samples from the Zhejiang Cord Blood Bank in 2022 were detected using the next generation sequencing technology (NGS) based on the Ion Torrent S5 platform. Among these a rare HLA-B allele with ambiguous combination result containing a base mutation was identified, and was further confimed by the third-generation sequencing (TGS) based on the nanopore technology.
RESULTS:
The NGS typing result of HLA-B locus showed HLA-B* 46:18, 54:06 or HLA-B*46:01, 54:XX (including a base mutation), and nanopore sequencing confirmed the typing as HLA-B*46:01, 54:XX (including a base mutation). Compared with HLA-B*54:01:01:01, the HLA-B*54:XX allele showed one single nucleotide substitution at position 1014 T>C in exon 6, with no amino acid change. The nucleotide sequence of the novel HLA-B*54:XX has been submitted to the GenBank nucleotide sequence database and the accession number OP853532 was assigned.
CONCLUSION
A ambiguous genotyping of the HLA-B Locus detected by NGS was distinguished by nanopore sequencing and a new HLA-B allele was successfully identified, which was officially named as HLA-B*54:01:11 by the World Health Organization Nomenclature Committee for Factors of the HLA System.
Humans
;
High-Throughput Nucleotide Sequencing
;
Alleles
;
HLA-B Antigens/genetics*
;
Genotype
;
Mutation
;
Sequence Analysis, DNA
;
Base Sequence
9.Application of Third-Generation Sequencing Technology in RHD Genotyping of a Chinese Pedigree with Weak D Phenotype.
Ling MA ; Tai-Xiang LIU ; Li-Li SHI ; Chen-Chen FENG ; Ruo-Yang ZHANG ; Fang ZHAO
Journal of Experimental Hematology 2025;33(4):1199-1202
OBJECTIVE:
To investigate the molecular mechanism of weak D phenotype in a Chinese family.
METHODS:
Routine Rh typing tests were performed first, and RHD exons 1-10 of the proband and his family members were sequenced by first-generation sequencing. RHD zygosity was also determined. Third-generation sequencing was used to analyze the haplotypes of the RHD gene.
RESULTS:
The proband showed a weak D serological phenotype. First-generation sequencing revealed a c.787G>A point mutation in exon 5. The family pedigree investigation showed that the proband and his younger sister had the same serological phenotype and molecular mechanism. His father carried this gene mutation, while his mother and younger brother were normal. Hybrid box was not detected, suggesting that all the family members did not have a haplotype with a complete deletion of the RHD gene. The results of third-generation sequencing showed that the proband and his sister inherited the weak D allele from their father and the non-functional allele RHD -CE(3-9)-D from their mother, respectively.
CONCLUSION
Third-generation sequencing technology enables haplotype analysis of the RHD gene and can detect complex genotypes such as genetic exchanges between RHD and RHCE combined with other mutations.
Female
;
Humans
;
Male
;
Alleles
;
Exons
;
Genotype
;
Haplotypes
;
High-Throughput Nucleotide Sequencing
;
Pedigree
;
Phenotype
;
Rh-Hr Blood-Group System/genetics*
;
East Asian People/genetics*
10.Correlation of ARID5B Gene Polymorphism and Risk of Childhood Acute Lymphoblastic Leukemia and Minimal Residual Disease.
Yu MA ; Ya-Dai GAO ; Jing GUO ; Xiao-Min ZHENG ; Xiao-Chun ZHANG
Journal of Experimental Hematology 2025;33(5):1269-1273
OBJECTIVE:
To explore the correlation between single nucleotide polymorphisms (SNPs) of ARID5B gene and the risk of acute lymphoblastic leukemia (ALL) and minimal residual disease (MRD) in children of Hui and Han nationality in Ningxia.
METHODS:
In this case-control study, 54 ALL children and control group with matched age, sex and nationality were detected for the polymorphism of ARID5B gene using fluorescence resonance energy transfer technique, and the susceptibility of different ALL genotypes and their correlation with MRD were analyzed.
RESULTS:
There were no significant differences in genotype and allele frequency of rs10994982, rs7089424, rs10740055, rs7073837, rs4245595 and rs7090445 between the two groups (P >0.05). At the locus of rs10821936, the frequencies of T/T genotype and T allele in ALL group were significantly higher than those in the control group (both P < 0.05). The C/C genotype of ARID5B gene SNP rs10821936 was a risk factor for early MRD positive in ALL children ( P < 0.05).
CONCLUSION
ARID5B gene SNP rs10821936 is related to the development of childhood ALL and MRD.
Humans
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Polymorphism, Single Nucleotide
;
Case-Control Studies
;
Neoplasm, Residual/genetics*
;
DNA-Binding Proteins/genetics*
;
Transcription Factors/genetics*
;
Genotype
;
Genetic Predisposition to Disease
;
Gene Frequency
;
Child
;
Male
;
Female
;
Alleles
;
Risk Factors
;
Child, Preschool

Result Analysis
Print
Save
E-mail