1.Three-dimensional printed scaffolds with sodium alginate/chitosan/mineralized collagen for promoting osteogenic differentiation.
Bo YANG ; Xiaojie LIAN ; Haonan FENG ; Tingwei QIN ; Song LYU ; Zehua LIU ; Tong FU
Journal of Biomedical Engineering 2025;42(5):1036-1045
The three-dimensional (3D) printed bone tissue repair guide scaffold is considered a promising method for treating bone defect repair. In this experiment, chitosan (CS), sodium alginate (SA), and mineralized collagen (MC) were combined and 3D printed to form scaffolds. The experimental results showed that the printability of the scaffold was improved with the increase of chitosan concentration. Infrared spectroscopy analysis confirmed that the scaffold formed a cross-linked network through electrostatic interaction between chitosan and sodium alginate under acidic conditions, and X-ray diffraction results showed the presence of characteristic peaks of hydroxyapatite, indicating the incorporation of mineralized collagen into the scaffold system. In the in vitro collagen release experiments, a weakly alkaline environment was found to accelerate the release rate of collagen, and the release amount increased significantly with a lower concentration of chitosan. Cell experiments showed that scaffolds loaded with mineralized collagen could significantly promote cell proliferation activity and alkaline phosphatase expression. The subcutaneous implantation experiment further verified the biocompatibility of the material, and the implantation of printed scaffolds did not cause significant inflammatory reactions. Histological analysis showed no abnormal pathological changes in the surrounding tissues. Therefore, incorporating mineralized collagen into sodium alginate/chitosan scaffolds is believed to be a new tissue engineering and regeneration strategy for achieving enhanced osteogenic differentiation through the slow release of collagen.
Chitosan/chemistry*
;
Alginates/chemistry*
;
Tissue Scaffolds/chemistry*
;
Printing, Three-Dimensional
;
Osteogenesis
;
Collagen/chemistry*
;
Cell Differentiation
;
Animals
;
Tissue Engineering/methods*
;
Cell Proliferation
;
Biocompatible Materials
;
Glucuronic Acid/chemistry*
;
Hexuronic Acids/chemistry*
2.Expansion of functional human salivary acinar cell spheroids with reversible thermo-ionically crosslinked 3D hydrogels.
Jose G MUNGUIA-LOPEZ ; Sangeeth PILLAI ; Yuli ZHANG ; Amatzia GANTZ ; Dimitria B CAMASAO ; Showan N NAZHAT ; Joseph M KINSELLA ; Simon D TRAN
International Journal of Oral Science 2025;17(1):39-39
Xerostomia (dry mouth) is frequently experienced by patients treated with radiotherapy for head and neck cancers or with Sjögren's syndrome, with no permanent cure existing for this debilitating condition. To this end, in vitro platforms are needed to test therapies directed at salivary (fluid-secreting) cells. However, since these are highly differentiated secretory cells, the maintenance of their differentiated state while expanding in numbers is challenging. In this study, the efficiency of three reversible thermo-ionically crosslinked gels: (1) alginate-gelatin (AG), (2) collagen-containing AG (AGC), and (3) hyaluronic acid-containing AG (AGHA), to recapitulate a native-like environment for human salivary gland (SG) cell expansion and 3D spheroid formation was compared. Although all gels were of mechanical properties comparable to human SG tissue (~11 kPa) and promoted the formation of 3D spheroids, AGHA gels produced larger (>100 cells/spheroid), viable (>93%), proliferative, and well-organized 3D SG spheroids while spatially and temporally maintaining the high expression of key SG proteins (aquaporin-5, NKCC1, ZO-1, α-amylase) for 14 days in culture. Moreover, the spheroids responded to agonist-induced stimulation by increasing α-amylase secretory granules. Here, we propose alternative low-cost, reproducible, and reversible AG-based 3D hydrogels that allow the facile and rapid retrieval of intact, highly viable 3D-SG spheroids.
Humans
;
Hydrogels/chemistry*
;
Acinar Cells/cytology*
;
Spheroids, Cellular/cytology*
;
Salivary Glands/cytology*
;
Gelatin/chemistry*
;
Collagen/chemistry*
;
Alginates/chemistry*
;
Cell Culture Techniques/methods*
;
Hyaluronic Acid/chemistry*
;
Cell Proliferation
;
Cell Survival
;
Cells, Cultured
3.Preparation of multi-layer compound microcapsules and their application in self-healing of concrete cracks.
Jianmiao XU ; Yuanyuan ZHOU ; Feng CHENG ; Zhiqiang LIU
Chinese Journal of Biotechnology 2025;41(1):448-460
Concrete is widely used in building construction, civil engineering, roads, bridges, etc., but concrete cracking remains a major issue in the engineering industry. To develop an effective and feasible concrete repair technology, this study combined microbial and microencapsulation technologies to prepare a multi-layer compound microcapsule using the piercing method. The formulation and drying method of microcapsules were optimized by taking their embedding rate and mechanical properties as evaluation criteria. The calcium transcrystallization process of microcapsules and the crystal form of products were characterized and compared with the calcium transcrystallization process in free cells. Finally, the effects of microcapsule incorporation on mechanical properties, impermeability, and self-healing performance of concrete specimens were then tested. The results showed that the air-dried multi-layer compound microcapsules, formulated with 1.0% wet cells of Bacillus cereus, 1.5% calcium chloride, 3.0% sodium alginate, 5.0% nutrients, 6.0% glycerol, 0.6% chitosan, and 2.0% urea, achieved an embedding rate of 95.3%, a rupture force of 60.0 N and a hardness of 150.8 N. These microcapsules can transform from a solid state to a flowing colloidal state when the microorganisms inside undergo a calcium formation reaction. Both the microcapsules and free cells produced stable calcite crystal forms of calcium carbonate through the calcium conversion reaction, with the microcapsules producing more uniform-sized particles, which are more conducive to accumulation in cracks, thereby enhancing the stability of repair. When microcapsules were incorporated into the concrete specimen at a content of 0.45%, the flexural strength of the specimen increased by 17.3%, and the compressive strength increased by 12.3%. In the water impermeability test, specimens with microcapsules demonstrated better impermeability compensation for the cement concrete than those with free cells. The self-healing effect of cracks proved that multi-layer compound microcapsules could completely repair cracks up to 0.7 mm wide, and a repair rate of 95% for 0.8 mm wide cracks. In this study, a multi-layer compound microcapsule was developed to protect microorganisms in concrete and provide nutrients required for their growth, which provided a new idea for microbial induced calcium carbonate precipitation in concrete crack repair.
Construction Materials
;
Capsules/chemistry*
;
Bacillus cereus/metabolism*
;
Alginates/chemistry*
4.Preparation, optimization, and in vitro evaluation of Pediococcus acidilactici HRQ-1 microcapsules.
Ruiqin HAN ; Song XU ; Xinyuan WANG ; Jingjing WANG ; Xiaoxia ZHANG ; Liping DU ; Zhiyong HUANG
Chinese Journal of Biotechnology 2025;41(4):1415-1427
We have isolated an intestinal probiotic strain, Pediococcus acidilactici HRQ-1. To improve its gastrointestinal fluid tolerance, transportation and storage stability, and slow-release properties, we employed the extrusion method to prepare the microcapsules with P. acidilactici HRQ-1 as the core material and sodium alginate and chitosan as the wall material. The optimal conditions for preparing the microcapsules were determined by single factor and orthogonal tests, and the optimal ratio was determined by taking the embedding rate, survival rate, storage stability, gastrointestinal fluid tolerance, and release rate as the evaluation indexes. The results showed that under the optimal embedding conditions, the embedding rate reached (89.60±0.02)%. Under the optimal formula of freeze-drying protective agent, the freeze-drying survival rate reached (76.42±0.13)%, and the average size of the microcapsules produced was (1.16±0.03) mm. The continuous gastrointestinal fluid simulation experiments confirmed that the microcapsules ensured the viable bacterial count and can slowly release bacteria in the intestinal fluid. The curve of the viable bacterial count during storage at 4 ℃ and room temperature indicated that the prepared microcapsules achieved strains' live number protection. The formula and preparation process of P. acidilactici microcapsules may provide a technological reserve for the preparation of more live bacterial drugs in the future.
Pediococcus acidilactici/chemistry*
;
Probiotics/chemistry*
;
Capsules/chemistry*
;
Alginates/chemistry*
;
Chitosan/chemistry*
;
Drug Compounding/methods*
;
Glucuronic Acid/chemistry*
;
Hexuronic Acids/chemistry*
;
Freeze Drying
5.Preparation of collagen-polysaccharide composite hydrogels and research progress in biomedical applications.
Meihong XU ; Enxiang JIAO ; Ziru SUN ; Kunshan YUAN ; Xiangyi FENG ; Yuanbiao LIU ; Kai GUO ; Kun LI ; Haijun ZHANG ; Xuehai ZHANG
Journal of Biomedical Engineering 2024;41(6):1286-1292
Collagen contains abundant cell binding motifs, which are conducive to adhesion, migration, and differentiation, maintain cell vitality and promote cell proliferation. However, pure collagen hydrogel has some shortcomings such as poor mechanical properties, poor thermal stability and fast degradation. Numerous studies have shown that the properties of collagen can be improved by combining it with natural polysaccharides such as alginate, chitosan, hyaluronic acid and cellulose. In this paper, the research status and biological application fields of four kinds of composite hydrogels, including collagen-alginate composite hydrogels, collagen-chitosan hydrogels, collagen-hyaluronic acid hydrogels and collagen-cellulose hydrogels, were summarized. The common preparation methods of four kinds of composite hydrogels were introduced, and the future development direction of collagen-based composite hydrogels was prospected.
Hydrogels/chemical synthesis*
;
Collagen/chemistry*
;
Polysaccharides/chemistry*
;
Alginates/chemistry*
;
Hyaluronic Acid/chemistry*
;
Chitosan/chemistry*
;
Biocompatible Materials/chemistry*
;
Humans
;
Tissue Engineering/methods*
;
Cellulose/chemistry*
;
Tissue Scaffolds
6.Immobilization of Lactobacillus bulgaricus with gellan gum and its application in continuous fermentation of D-lactic acid from corn straw.
Yongxin GUO ; Gang WANG ; Kexin LI ; Jiaqi HAN ; Huan CHEN ; Sitong ZHANG ; Yanli LI ; Guang CHEN
Chinese Journal of Biotechnology 2023;39(3):1083-1095
Biorefinery of chemicals from straw is an effective approach to alleviate the environmental pollution caused by straw burning. In this paper, we prepared gellan gum immobilized Lactobacillus bulgaricus T15 gel beads (LA-GAGR-T15 gel beads), characterized their properties, and established a continuous cell recycle fermentation process for D-lactate (D-LA) production using the LA-GAGR-T15 gel beads. The fracture stress of LA-GAGR-T15 gel beads was (91.68±0.11) kPa, which was 125.12% higher than that of the calcium alginate immobilized T15 gel beads (calcium alginate-T15 gel beads). This indicated that the strength of LA-GAGR-T15 gel beads was stronger, and the strain was less likely to leak out. The average D-LA production was (72.90±2.79) g/L after fermentation for ten recycles (720 h) using LA-GAGR-T15 gel beads as the starting strain and glucose as the substrate, which was 33.85% higher than that of calcium alginate-T15 gel beads and 37.70% higher than that of free T15. Subsequently, glucose was replaced by enzymatically hydrolyzed corn straw and fermented for ten recycles (240 h) using LA-GAGR-T15 gel beads. The yield of D-LA reached (1.74±0.79) g/(L·h), which was much higher than that of using free bacteria. The wear rate of gel beads was less than 5% after ten recycles, which indicated that LA-GAGR is a good carrier for cell immobilization and can be widely used in industrial fermentation. This study provides basic data for the industrial production of D-LA using cell-recycled fermentation, and provides a new way for the biorefinery of D-LA from corn straw.
Fermentation
;
Lactobacillus delbrueckii
;
Zea mays
;
Lactic Acid
;
Alginates/chemistry*
;
Glucose
7.Synthesis of a novel injectable alginate impression material and impression accuracy evaluation.
Xingzi LIU ; Xinhui WANG ; Jingya WU ; Jingjing LUO ; Yun WANG ; Quanli LI
West China Journal of Stomatology 2022;40(6):662-667
OBJECTIVES:
This work aimed to synthesize a novel injectable alginate impression material and evaluate its accuracy.
METHODS:
Certain proportions of sodium alginate, trisodium phosphate dodecahydrate, potassium fluorotitanate, diatomaceous earth, and other ingredients were dissolved in water and mixed evenly with a planetary centrifugal mixer to obtain a certain viscosity base paste. Certain proportions of calcium sulfate hemihydrate, magnesium oxide, glycerin, and polyethylene glycol (PEG) 400 were mixed evenly with a planetary centrifugal mixer to obtain the reactor paste with the same viscosity as the base paste. The base and reactor pastes were poured into a two-cylinder cartridge at a 2∶1 volume ratio. A gun device was used to accomplish mixing by compressing materials into a mixing tip. The samples were divided into three groups: injectable alginate impression materials (IA group) as the experimental group, and Jeltrate alginate impression materials (JA group) and Silagum-putty/light addition silicone rubber impression materials (SI group) as the two control groups.
RESULTS:
Scanning electron microscopy (SEM) showed that the injectable alginate impression materials had a denser structure and fewer bubbles than the commercial alginate impression material. The accuracy of the three kinds of impression materials was evaluated by 3D image superposition. The deviations between the three test group models and the standard model (trueness) were 49.58 μm±1.453 μm (IA group), 54.75 μm±7.264 μm (JA group), and 30.92 μm±1.013 μm (SI group). The deviations of the models within each test group (precision) were 85.79 μm±8.191 μm (IA group), 97.65 μm±11.060 μm (JA group), and 56.51 μm±4.995 μm (SI group). Significant differences in trueness and precision were found among the three kinds of impression materials (P<0.05).
CONCLUSIONS
The accuracy of the new injectable alginate impression material was better than that of the traditional powder-type alginate impression material but worse than that of the addition silicone rubber impression materials. The novel injec-table alginate impression material demonstrated good operation performance and impression accuracy, showing broad application prospect.
Alginates/chemistry*
;
Silicone Elastomers/chemistry*
;
Dental Impression Materials/chemistry*
;
Powders
8.A Noval Method for Producing Antibacterial Wound Dressing by Using Fused Deposition Molding with Post-3D-printed Process.
Chinese Journal of Medical Instrumentation 2019;43(4):275-278
Using three-dimensional printing to produce antibacterial wound dressing is a new topic that will change the production style of wound dressing industry. Combining with post-3D-printed process, a desktop fused deposition molding equipment can be used to produce wound dressing containing polyvinyl alcohol, alginate and chitosan. The wound dressing produced by FDM has good aspects of absorbency, moisture vapour transmission rate and mechanical property. After loaded with antibacterial agent iodine and silver nano particle, the antibacterial activity rate increases to 99% and it is suitable to use as antibacterial wound dressing. This method affects the production of wound dressing to a more cost-effective way, and provides a possible individualized treatment for patient in the future.
Alginates
;
chemistry
;
Anti-Bacterial Agents
;
administration & dosage
;
Bacteria
;
drug effects
;
Bandages
;
economics
;
standards
;
Chitosan
;
chemistry
;
Humans
;
Iodine
;
administration & dosage
;
pharmacology
;
Nanoparticles
;
administration & dosage
;
Polyvinyl Alcohol
;
chemistry
;
Printing, Three-Dimensional
;
Silver
;
administration & dosage
;
pharmacology
;
Wound Healing
9.Formulation development and evaluation of gastroretentive floating beads with Brucea javanica oil using ionotropic gelation technology.
Yue ZHANG ; Xi-Tong ZHANG ; Qi ZHANG ; Bing WANG ; Tong ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(4):293-301
In the present study, a gastric retention floating system for Brucea javanica oil, composed of alginate and carrageenan, was prepared using ionotropic gelation. Parameters for floatability, drug load, encapsulation efficiency, bead morphology, in vitro release, and in vivo gastric retention were evaluated. The optimized formulation via Box-Behnken design consisted of 1.7% alginate (W/V), 1.02% carrageenan (W/V), 1.4% CaCO (W/V), and a gelling bath of pH 0.8. The alginate-carrageenan-Brucea javanica oil beads had a porous structure and exhibited up to 24 h of in vitro floatability with a load capacity of 45%-55% and an encapsulation efficiency of 70%-80%. A 6-h sustained release was observed in vitro. The beads had a prolonged gastric retention (> 60% at 6 h) in fasted rats, compared to non-floating beads (15% at 6 h), as measured by gamma scintigraphy with single-photon emission tomography/computed tomography (SPET/CT). In conclusion, the alginate-carrageenan-Brucea javanica oil system showed enhanced oil encapsulation efficiency, excellent floating and gastric retention abilities, and a favorable release behavior.
Alginates
;
chemistry
;
Animals
;
Biological Availability
;
Brucea
;
chemistry
;
Carrageenan
;
chemistry
;
Delayed-Action Preparations
;
administration & dosage
;
chemistry
;
pharmacokinetics
;
Drug Carriers
;
chemistry
;
Drug Delivery Systems
;
methods
;
Drug Evaluation, Preclinical
;
Gastric Mucosa
;
metabolism
;
Glucuronic Acid
;
chemistry
;
Hexuronic Acids
;
chemistry
;
Microspheres
;
Plant Oils
;
administration & dosage
;
chemistry
;
pharmacokinetics
;
Rats
;
Rats, Sprague-Dawley
10.Three-dimensional Culture of Chondrocyte Using Methacrylic Alginate Gel Beads Cross-linked with Mixed Metal-cation.
Yang WANG ; Yuxia FENG ; Xing FAN ; Liling REN
Journal of Biomedical Engineering 2015;32(3):599-604
This study was to explore a better three-dimensional (3-D) culture method of chondrocyte. The interpenetrating network (IPN) gel beads were developed through a photo-cross linking reaction with mixed barium ions and calcium ions at the ratio of 5:5 with the methacrylic alginate (MA), which was a chemically conjugated alginate with methacrylic groups. The second generation of primary cartilage cells was encapsulated in the MA gel beads for three weeks. In the designated timing, HE stain, Alamar blue method and Scanning electron microscopic were used to determine the cartilage cells growth, proliferation and the cell distribution in the scaffolds, respectively. The expression of type II collagen was investigated by an immunohistochemistry assay and the glycosaminoglycan content was quantitatively evaluated with the spectrophotometry of 1, 9 dimethylene blue assay. Compared to the alginate control group, the deposition of glycosaminoglycan was significantly upregulated in IPN-MA gel beads with higher cell proliferation. The secretion of extracellular matrix and proliferation of chondrocyte in methacrylic alginate gel beads were higher than that in Alginate beads. Cells were able to attach, to grow well on the scaffolds under scanning electron microscopy. The result of immunohistochemistry staining of collagen type II was positive, confirming the maintenance of chondrocyte phenotype in methacrylic alginate gel beads. This study shows a great potential for three-dimensional culture of cartilage.
Alginates
;
chemistry
;
Barium
;
chemistry
;
Calcium
;
chemistry
;
Cartilage
;
cytology
;
Cations
;
Cell Culture Techniques
;
instrumentation
;
Cells, Cultured
;
Chondrocytes
;
cytology
;
Collagen Type II
;
chemistry
;
Glucuronic Acid
;
chemistry
;
Glycosaminoglycans
;
chemistry
;
Hexuronic Acids
;
chemistry
;
Metals
;
chemistry
;
Microscopy, Electron, Scanning

Result Analysis
Print
Save
E-mail