1.Characteristics of changes in non-invasive hemodynamic parameters in neonates with septic shock.
Xiaoyi FANG ; Jinzhi XIE ; Airun ZHANG ; Guanming LI ; Silan YANG ; Xiaoling HUANG ; Jizhong GUO ; Niyang LIN
Chinese Critical Care Medicine 2025;37(1):29-35
OBJECTIVE:
To observe the characteristics of changes in non-invasive hemodynamic parameters in neonates with septic shock so as to provide clinical reference for diagnosis and treatment.
METHODS:
A observational study was conducted. The neonates with sepsis complicated with septic shock or not admitted to neonatal intensive care unit (NICU) of the First Affiliated Hospital of Shantou University Medical College were enrolled as the study subjects, who were divided into preterm infant (< 37 weeks) and full-term infant (≥ 37 weeks) according to the gestational age. Healthy full-term infants and hemodynamically stable preterm infants transferring to NICU after birth were enrolled as controls. Electronic cardiometry (EC) was used to measure hemodynamic parameters, including heart rate (HR), mean arterial pressure (MAP), stroke volume (SV), stroke volume index (SVI), cardiac output (CO), cardiac index (CI), systemic vascular resistance (SVR) and systemic vascular resistance index (SVRI), before treatment in the septic shock group, at the time of diagnosis of sepsis in the sepsis without shock group, and before the discharge from the obstetric department or on the day of transferring to NICU in the control group.
RESULTS:
Finally, 113 neonates with complete data and parental consent for non-invasive hemodynamic monitoring were enrolled, including 32 cases in the septic shock group, 25 cases in the sepsis without shock group and 56 cases in the control group. In the septic shock group, there were 17 cases at the compensated stage and 15 cases at the decompensated stage. There were 21 full-term infants (20 cured or improved and 1 died) and 11 premature infants (7 cured or improved and 4 died), with the mortality of 15.62% (5/32). There were 18 full-term infants and 7 premature infants in the sepsis without shock group and all cured or improved without death. The control group included 28 full-term infants and 28 premature infants transferring to NICU after birth. Non-invasive hemodynamic parameter analysis showed that SV, SVI, CO and CI of full-term infants in the septic shock group were significantly lower than those in the sepsis without shock group and control group [SV (mL): 3.52±0.99 vs. 5.79±1.32, 5.22±1.02, SVI (mL/m2): 16.80 (15.05, 19.65) vs. 27.00 (22.00, 32.00), 27.00 (23.00, 29.75), CO (L/min): 0.52±0.17 vs. 0.80±0.14, 0.72±0.12, CI (mL×s-1×m-2): 40.00 (36.67, 49.18) vs. 62.51 (56.34, 70.85), 60.01 (53.34, 69.68), all P < 0.05], while SVR and SVRI were significantly higher than those in the sepsis without shock group and control group [SVR (kPa×s×L-1): 773.46±291.96 vs. 524.17±84.76, 549.38±72.36, SVRI (kPa×s×L-1×m-2): 149.27±51.76 vs. 108.12±12.66, 107.81±11.87, all P < 0.05]. MAP, SV, SVI, CO and CI of preterm infants in the septic shock group were significantly lower than those in the control group [MAP (mmHg, 1 mmHg ≈ 0.133 kPa): 38.55±10.48 vs. 47.46±2.85, SV (mL): 2.45 (1.36, 3.58) vs. 3.96 (3.56, 4.49), SVI (mL/m2): 17.60 (14.20, 25.00) vs. 25.50 (24.00, 29.00), CO (L/min): 0.32 (0.24, 0.63) vs. 0.56 (0.49, 0.63), CI (mL×s-1×m-2): 40.01 (33.34, 53.34) vs. 61.68 (56.68, 63.35), all P < 0.05], while SVR and SVRI were similar to the control group [SVR (kPa×s×L-1): 1 082.88±689.39 vs. 656.63±118.83, SVRI (kPa×s×L-1×m-2): 126.00±61.50 vs. 102.37±11.68, both P > 0.05]. Further analysis showed that SV, SVI and CI of neonates at the compensation stage in the septic shock group were significantly lower than those in the control group [SV (mL): 3.60±1.29 vs. 4.73±1.15, SVI (mL/m2): 19.20±8.33 vs. 26.34±3.91, CI (mL×s-1×m-2): 46.51±20.34 vs. 61.01±7.67, all P < 0.05], while MAP, SVR and SVRI were significantly higher than those in the control group [MAP (mmHg): 52.06±8.61 vs. 48.54±3.21, SVR (kPa×s×L-1): 874.95±318.70 vs. 603.01±111.49, SVRI (kPa×s×L-1×m-2): 165.07±54.90 vs. 105.09±11.99, all P < 0.05]; MAP, SV, SVI, CO and CI of neonates at the decompensated stage in the septic shock group were significantly lower than those in the control group [MAP (mmHg): 35.13±6.08 vs. 48.54±3.21, SV (mL): 2.89±1.17 vs. 4.73±1.15, SVI (mL/m2): 18.50±4.99 vs. 26.34±3.91, CO (L/min): 0.41±0.19 vs. 0.65±0.15, CI (mL×s-1×m-2): 43.34±14.17 vs. 61.01±7.67, all P < 0.05], while SVR and SVRI were similar to the control group [SVR (kPa×s×L-1): 885.49±628.04 vs. 603.01±111.49, SVRI (kPa×s×L-1×m-2): 114.29±43.54 vs. 105.09±11.99, both P > 0.05].
CONCLUSIONS
Full-term infant with septic shock exhibit a low cardiac output, high vascular resistance hemodynamic pattern, while preterm infant with septic shock show low cardiac output and normal vascular resistance. At the compensated stage the hemodynamic change is low output and high resistance type, while at the decompensated stage it is low output and normal resistance type. Non-invasive hemodynamic monitoring can assist in the identification of neonatal septic shock and provide basis for clinical diagnosis and treatment.
Humans
;
Shock, Septic/physiopathology*
;
Infant, Newborn
;
Hemodynamics
;
Female
;
Male
;
Case-Control Studies
;
Infant, Premature
2.Pulmonary function of preterm infants with bronchopulmonary dysplasia from 0 to 6 months
Airun ZHANG ; Guanming LI ; Min WANG ; Niyang LIN ; Silan YANG ; Chanzhi ZHUANG ; Xiaoyi FANG
Chinese Pediatric Emergency Medicine 2021;28(7):597-602
Objective:Through analyzing pulmonary function and clinical characteristics of preterm infants with bronchopulmonary dysplasia (BPD) from 0 to 6 months, the characteristics of pulmonary function in infants with BPD were investigated.Methods:A retrospective study was conducted on 85 infants hospitalized in the Department of Neonatology of the First Affiliated Hospital of Shantou University Medical College from December 2015 to December 2017, including 25 preterm infants with BPD (BPD group), 30 preterm infants without BPD (preterm control group), and 30 term infants without respiratory diseases (full-term control group), respectively.Pulmonary function were tested in preterm infants at 37 to 41 weeks of corrected age as well as at 6 months of corrected age, and full-term infants at 3 days to 1 week after birth as well as at 6 months old.The outcomes of respiratory system diseases at 6 months of corrected age in two groups of preterm infants were followed up.Results:(1) While preterm infants at 37 to 41 weeks of corrected age and full-term infants at 3 days to 1 week after birth, time to peak tidal expiratory flow/expiratory time(TPTEF/TE)and volume to peak tidal expiratory flow/exhaled volume(VPTEF/VE) of BPD group were lower than those of the other two groups ( P<0.05), while the differences between preterm control group and full-term control group is not significant.VPTEF, peak expiratory flow (PEF), tidal expiratory flow when 75% of tidal volume reminds in the lung (TEF75%), TEF50%, TEF25% in BPD group and preterm control group were lower than those in the full-term group ( P<0.05). The differences between BPD group and preterm control group were not significant ( P>0.05). The BPD group had significantly lower TPTEF/TE, VPTEF/VE and ratio of tidal expiratory flow and tidal inspiratory flow when 50% of tidal volume reminds in the lung (TEF50%/TIF50%) and higher VPTEF, PEF, TEF25% at 6 months of corrected age than those at 37 to 41 weeks of corrected age ( P<0.05). While at 6 months of corrected age, the BPD group had higher PEF than that in the preterm control group ( P<0.05). There was no statistically significant difference between that in the occurrence of lower respiratory tract infections (43.3% vs.16.7%), wheezing (21.7% vs.8.3%), rehospitalization (39.1% vs.16.7%) between BPD group and preterm control group within 6 months of corrected age ( P>0.05). Conclusion:Infants with BPD had small airway obstruction at 37 to 41 weeks of corrected age and may not improve significantly at 6 months of corrected age.

Result Analysis
Print
Save
E-mail