1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.The mechanism of epigallocatechin gallate enhancing the sensitivity of hepatocellular carcinoma cells to lenva-tinib
Chuanfang SONG ; Jiang AI ; Chao WEN ; Jie ZHANG ; Jianghe CUI
China Pharmacy 2025;36(18):2256-2261
OBJECTIVE To investigate the potential mechanism of epigallocatechin gallate (EGCG) enhancing the sensitivity of hepatocellular carcinoma (HCC) cells to lenvatinib based on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. METHODS Five human HCC cell lines (HepG2, Huh-7, SMMC-7721, SNU-368 and SNU-739) were used to evaluate the effects of lenvatinib alone and in combination with EGCG on survival rates, clone number, proliferation rate, invasion number and the expressions of mRNAs and proteins related to the PI3K/Akt signaling pathway. The PI3K activator insulin-like growth factor-1 (IGF-1) was introduced to investigate the effect of activating the PI3K/Akt signaling pathway on the sensitization effect of EGCG. RESULTS Compared with the control group, lenvatinib (10 μmol/L) and different concentrations of EGCG+ lenvatinib (1, 5 and 10 μg/mL EGCG+10 μmol/L lenvatinib) significantly reduced the survival rates and clone numbers of all five HCC cell lines in a dose-dependent manner (P<0.05). Lenvatinib (10 μmol/L) and EGCG+lenvatinib (10 μg/mL EGCG+10 μmol/L lenvatinib) also markedly inhibited the proliferation rate and invasion numbers of these cells, and decreased the mRNA expressions of PI3K, Akt, mammalian target of rapamycin (mTOR), P70S6K and 4EBP, and the phosphorylation levels of PI3K and Akt, as well as the protein expressions of mTOR and B cell lymphoma-2 (Bcl-2) in HepG2 cells or all five HCC cells; conversely, the mRNA and protein expressions of phosphatase and tensin homologue deleted on chromosome 10(PTEN), and the protein expressions of caspase-3 and cleaved caspase-3 were significantly upregulated, with more pronounced effects observed in the EGCG+lenvatinib group than in the lenvatinib group (P<0.05). Compared with the lenvatinib group and the EGCG+lenvatinib group, the clone number, proliferation rate and invasion number of HepG2 cells in the EGCG+lenvatinib+IGF-1 group (10 μg/mL EGCG+10 μmol/L lenvatinib+50 ng/mL IGF-1) were significantly increased (P<0.05). CONCLUSIONS EGCG can enhance the sensitivity of HCC cells to lenvatinib, and its underlying mechanism may be related to the inhibition of the activation of PI3K/Akt signaling pathway activation.
5.Effect of total secondary ginsenosides on apoptosis and energy metabolism of H9c2 cells under hypoxia based on mitochondrial biogenesis.
Zhong-Jie YUAN ; Yue XIAO ; Zhen LIU ; Ai-Qun ZHANG ; Bin LI ; Shang-Xian GAO
China Journal of Chinese Materia Medica 2025;50(5):1255-1266
This study explores the effect of total secondary ginsenosides(TSG) on apoptosis and energy metabolism in H9c2 cells under hypoxia and its potential mechanisms. H9c2 cell viability was observed and the apoptosis rate was calculated to determine suitable intervention concentrations of TSG, antimycin A complex(AMA), and coenzyme Q10(CoQ10), along with the duration of hypoxia. H9c2 cells at the logarithmic phase were divided into a normal group, a model group, a TSG group, an AMA group, a TSG+AMA group, and a CoQ10 group. All groups, except the normal group, were treated with their respective intervention drugs and cultured under hypoxic conditions. Adenosine triphosphate(ATP) content and creatine kinase(CK) activity were measured using an ATP chemiluminescence assay kit and a CK colorimetric assay kit. Flow cytometry was used to assess apoptosis rates, and Western blot evaluated the expression levels of apoptosis-related proteins, including B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), cysteinyl aspartate-specific protease(caspase)-3, caspase-8, and caspase-9, as well as mitochondrial biogenesis-related proteins peroxisome proliferator-activated receptor-γ coactivator 1α(PGC-1α), estrogen-related receptor-α(ERRα), nuclear respiratory factor(NRF)-1, NRF-2, peroxisome proliferator activated receptor-α(PPARα), and Na~+-K~+-ATPase. RT-PCR was employed to analyze the mRNA expression of mitochondrial biogenesis factors, including PGC-1α, ERRα, NRF-1, NRF-2, PPARα, mitochondrial transcription factor A(TFAM), mitochondrial cytochrome C oxidase 1(COX1), and mitochondrial NADH dehydrogenase subunit 1(ND1), ND2. The selected intervention concentrations were 7.5 μg·mL~(-1) for TSG, 10 μmol·L~(-1) for AMA, and 1×10~(-4) mol·L~(-1) for CoQ10, with a hypoxia duration of 6 h. Compared with the normal group, the model group showed decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression in H9c2 cells. Additionally, the protein and mRNA expression levels of mitochondrial biogenesis-related factors(PGC-1α, ERRα, NRF-1, NRF-2, PPARα), mRNA expression of TFAM, COX1, and ND1, ND2, and protein expression of Na~+-K~+-ATPase in mitochondrial DNA, were also reduced. In the TSG and CoQ10 groups, ATP content and CK activity increased, and apoptosis rates decreased compared with those in the model group. The TSG group showed decreased protein expression of apoptosis-related proteins Bax, caspase-3, caspase-8, and caspase-9, increased protein and mRNA expression of mitochondrial biogenesis factors PGC-1α, ERRα, NRF-1, and PPARα, and increased NRF-2 protein expression and TFAM mRNA expression in mitochondrial DNA. Conversely, in the AMA group, ATP content and CK activity decreased, the apoptosis rate increased, Bcl-2 expression decreased, and Bax, caspase-3, caspase-8, and caspase-9 expression increased, alongside reductions in PGC-1α, ERRα, NRF-1, NRF-2, PPARα protein and mRNA expression, as well as TFAM, COX1, ND1, ND2 mRNA expression and Na~+-K~+-ATPase protein expression. Compared with the TSG group, the TSG+AMA group exhibited decreased ATP content and CK activity, increased apoptosis rates, decreased Bcl-2 expression, and increased Bax, caspase-3, caspase-8, and caspase-9 expression, along with decreased PGC-1α, ERRα, NRF-1, NRF-2, and PPARα protein and mRNA expression and TFAM, COX1, and ND1, ND2 mRNA expression. Compared with the AMA group, the TSG+AMA group showed increased CK activity, decreased apoptosis rate, increased Bcl-2 expression, and decreased Bax, caspase-8, and caspase-9 expression. Additionally, the protein and mRNA expression of PGC-1α, ERRα, NRF-1, PPARα, mRNA expression of TFAM, COX1, ND1, ND2, and Na~+-K~+-ATPase protein expression increased. In conclusion, TSG enhance ATP content and CK activity and inhibit apoptosis in H9c2 cells under hypoxia, and the mechanisms may be related to the regulation of PGC-1α, ERRα, NRF-1, NRF-2, PPARα, and TFAM expression, thus promoting mitochondrial biogenesis.
Apoptosis/drug effects*
;
Ginsenosides/pharmacology*
;
Energy Metabolism/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Line
;
Cell Hypoxia/drug effects*
;
Organelle Biogenesis
;
Adenosine Triphosphate/metabolism*
;
Humans
;
Cell Survival/drug effects*
6.Inhibition of CCT5-mediated asparagine biosynthesis and anti-PD-L1 produce synergistic antitumor effects in colorectal cancer.
Yujie ZHANG ; Weiyi ZHAO ; Ling WU ; Tianjing AI ; Jie HE ; Zetao CHEN ; Chuangyuan WANG ; Hui WANG ; Rui ZHOU ; Chaoqun LIU ; Liang ZHAO
Acta Pharmaceutica Sinica B 2025;15(5):2480-2497
Abnormal amino acid metabolism promotes tumor progression by inducing malignant behaviors in tumor cells and altering the immune landscape within the tumor microenvironment. However, the underlying mechanisms remain unclear. In this study, we constructed colorectal cancer (CRC) organoids and patient-derived tumor xenograft (PDX) models, performing multifaceted validation to confirm that T-complex protein 1 subunit epsilon (CCT5), mediates the biosynthesis of aspartate and enhances sensitivity to anti-PD-L1 immunotherapy. Mechanistically, CCT5 directly binds to asparagine synthetase (ASNS) and promotes the synthesis of aspartate (Asn). The Asn-mTORC1 axis facilitates tumor cell proliferation while upregulating PD-L1 expression, which leads to a reduction in the number of effector CD8+ T cells. Treatment with l-asparaginase (ASNase) combined with anti-PD-L1 therapy effectively reverses the growth of CRC characterized by high CCT5 expression. In summary, we identify CCT5 as a potential biomarker to guide the combined use of ASNase and anti-PD-L1 antibodies in CRC treatment.
7.Association between Solid Cooking Fuel Use and Frailty Trajectories: Findings from a Nationwide Cohort in China.
Yang LIU ; Bing Jie WU ; Bing Bing FAN ; Chun Xia LI ; Chang SU ; Ai Dong LIU ; Tao ZHANG
Biomedical and Environmental Sciences 2025;38(6):653-665
OBJECTIVE:
Burning solid cooking fuel contributes to household air pollution and is associated with frailty. However, how solid cooking fuel use contributes to the development of frailty has not been well illustrated.
METHODS:
This study recruited 8,947 participants aged ≥ 45 years from the China Health and Retirement Longitudinal Study, 2011-2018. Group-based trajectory modeling was employed to identify frailty trajectories. Multinomial logistic regression was used to assess the association between solid cooking fuel use and frailty trajectories. Population-attributable fractions were used to estimate the frailty burden from solid fuel use.
RESULTS:
We identified three frailty trajectories: low-stable ( n = 5,789), moderate-increasing ( n = 2,603), and fast-increasing ( n = 555). Solid fuel use was associated with higher odds of being in the moderate-increasing ( OR: 1.24, 95% CI: 1.08-1.42) and fast-increasing ( OR: 1.48, 95% CI: 1.14-1.92) trajectories. These associations were strengthened by longer solid fuel use ( P for trend < 0.001). Switching to clean fuel significantly reduced the risk of being in these trajectories compared with persistent solid fuel users. Without solid fuel, 8% of moderate- and 19% of fast-increasing trajectories demonstrated frailty development like the low-stable group.
CONCLUSION
Solid cooking fuel use is associated with frailty trajectories in middle-aged and older Chinese populations.
Humans
;
China/epidemiology*
;
Cooking
;
Male
;
Female
;
Middle Aged
;
Aged
;
Air Pollution, Indoor/adverse effects*
;
Frailty/etiology*
;
Longitudinal Studies
;
Cohort Studies
8.Interleukin-4 regulates macrophage polarization and osteogenic differentiation of bone marrow mesenchymal stem cells
Jie ZHANG ; Tianjiao XIAO ; Li LI ; Jiabing KANG ; Jifan ZHAN ; Yan WEI ; Ai TIAN
Chinese Journal of Tissue Engineering Research 2024;28(25):3960-3966
BACKGROUND:Interleukin-4 can promote the osteogenic effect of bone substitute materials,but its molecular mechanism is not yet clear.Further elucidating the mechanism of interleukin-4 promoting osteogenic effect can help find safe,economical,and effective methods for the regeneration treatment of alveolar bone defects in patients. OBJECTIVE:To explore the effect of interleukin-4 intervention on polarization transformation of macrophages and osteogenic differentiation of bone marrow mesenchymal stem cells and its possible mechanism. METHODS:RAW264.7 cells in the M1 group were induced with interferon gamma + lipopolysaccharide for 24 hours.RAW264.7 cells in the interleukin-4+M1 group were induced with interferon gamma + lipopolysaccharide for 24 hours and then interleukin-4 was added for 24 hours.RAW264.7 cells in the interleukin-4+AG+M1 group were induced with interferon gamma + lipopolysaccharide for 24 hours,and then interleukin-4 and AG-490,a JAK/STAT pathway inhibitor,were added for 24 hours.After intervention,immunofluorescence staining was used to analyze the expression of inducible nitric oxide synthase and CD206,the phenotypic marker protein of macrophages.ELISA kit was used to detect the expression of interleukin-10 and tumor necrosis factor-α in the supernatant of cell culture.The gene expressions of nodular receptor protein-3(NLRP3),interleukin-1β,and caspase-1 were detected by RT-qPCR.The expression levels of tyrosine protein kinase 1(JAK1)/phosphorylated tyrosine protein kinase 1(p-JAK1),signal transduction and transcription activator 6(STAT6)/phosphorylated signal transduction and transcription activator 6(p-STAT6),NLRP3,pro-interleukin-1β and pro-caspase-1 were detected by western blot assay.Then,RAW264.7 cells in the above four groups were indirectly co-cultured with bone marrow mesenchymal stem cells by transwell for 24 hours,followed by alkaline phosphatase staining and alizarin red staining.The mRNA expressions of alkaline phosphatase,collagen type I,and osteocalcin were detected by RT-qPCR. RESULTS AND CONCLUSION:(1)Immunofluorescence and ELISA results showed that interleukin-4 intervention could promote the expression of CD206 and interleukin-10 in M2 macrophages,and inhibit the secretion of inducible nitric oxide synthase and tumor necrosis factor-α.(2)RT-qPCR results showed that interleukin-4 could suppress the expression of NLRP3,interleukin-1β,and caspase-1 mRNAs.(3)Western blot assay showed that interleukin-4 could promote the expression of JAK1/p-JAK1,STAT6/p-STAT6 and NLRP3 proteins.(4)The alkaline phosphatase staining and alizarin red staining of bone marrow mesenchymal stem cells co-cultured with the interleukin-4+M1 group were significantly enhanced,and the mRNA expressions of alkaline phosphatase,collagen type I,and osteocalcin were significantly increased.It is concluded that interleukin-4 may inhibit the activation of NLRP3 by up-regulating JAK1/STAT6 pathway,thus promoting the transformation of macrophages from M1 polarization to M2 polarization,and finally enhancing the osteogenic differentiation ability of bone marrow mesenchymal stem cells.
9.Reform and Development of Rare Diseases Drug Evaluation and Approval in China
Guo HUANG ; Zhimin YANG ; Ling TANG ; Jie ZHANG ; Xing AI ; Geleng SE RI ; Tian ZHAO
JOURNAL OF RARE DISEASES 2024;3(4):438-445
Rare diseases have a significant and profound impact on society, the economy, and the healthcare system. The path to developing drugs for rare diseases is particularly arduous. Due to the small number of patients and limited market demand, pharmaceutical companies don′t have enough incentives and resources to invest in drug research and development. Additionally, the long development cycles, high costs, and high risks have led to a number of potential therapeutic drug failures at the early stages of development. This article summarizes a series of encouraging policies adopted by the National Medical Products Administration for rare diseases, which is an important public health issue, as well as the achievements in the review and approval of rare disease drugs in recent years. These policies have accelerated the approval process. Meanwhile, the policies ensure the safety and effectiveness of drugs and offer more treatment options and hopes to patients with rare diseases. With the continuous effort at optimizing the policy environment and the advancement of research and development technologies, China′s drug regulatory authorities will continue to focus on the clinical needs of rare diseases, to implement " patient-centered " approach to drug development, inject new vitality into the research and development of drugs of rare diseases, and offer more precise and effective treatment choices for patients with rare diseases.
10.Synthesis of phenylacetamide derivatives and their protective effects on islet cell damage induced by palmitic acid
Ai-Yun LI ; Li GUAN ; Wan-Zhen SU ; Yang-Yang LU ; Sheng-Jie ZHANG ; Wei-Ze LI ; Xiang-Ying JIAO
Chinese Pharmacological Bulletin 2024;40(6):1130-1136
Aim To design and synthesize a series of phenylacetamide derivatives with different substituted phenylacetic acid as raw materials,and to investigate the protective effects of the compound on the damage of pancreatic β cells induced by palmitate acid(PA).Methods Min6 cells were cultured and divided into B blank control group,PA treatment group and PA+compounds group.The viability of Min6 cells was de-tected by CCK-8.The protein expressions of TXNIP and NLRP3 were observed by Western blot.MDA con-tent and SOD activity were detected by MDA and SOD kit.The insulin secretion of Min6 islet cells was meas-ured with insulin ELISA kit.Results A total of 10 phenylacetamide derivatives were designed and synthe-sized.Their structures were confirmed by 1H NMR and ESI-MS.Pharmacological activity study showed that most of the compounds had protective effects on islet βcells,among which LY-6 and LY-8 had stronger pro-tective effects than PA model group,with the cell via-bility of 61.4%,and LY-6 had the highest cell activi-ty,reaching to 104.9%.Compared with PA group,the protein expression of TXNIP and NLRP3 decreased in LY-6 and LY-8 groups,MDA content decreased and SOD activity increased,and insulin secretion of Min6 cell increased.Conclusions LY-6 and LY-8 inhibit TXNIP expression and decrease the activation of NL-RP3 inflammasome,and decrease the production of MDA and increase SOD activity,and thus reducing is-let β cells apoptosis and increasing insulin secretion.Therefore,the compound LY-6 could serve as a poten-tial anti-diabetic new chemical entity.

Result Analysis
Print
Save
E-mail