1.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
2.POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration.
Yizhi XIAO ; Ping YANG ; Wushuang XIAO ; Zhen YU ; Jiaying LI ; Xiaofeng LI ; Jianjiao LIN ; Jieming ZHANG ; Miaomiao PEI ; Linjie HONG ; Juanying YANG ; Zhizhao LIN ; Ping JIANG ; Li XIANG ; Guoxin LI ; Xinbo AI ; Weiyu DAI ; Weimei TANG ; Jide WANG
Chinese Medical Journal 2025;138(7):838-850
BACKGROUND:
The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown.
METHODS:
Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice.
RESULTS:
POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo . Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p , and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p , miR-29a-3p , PIK3R1 , and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1 , PIK3R1 , and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples.
CONCLUSIONS
The POU2F1 - miR-29b-3p / miR-29a-3p-PIK3R1 / PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
MicroRNAs/metabolism*
;
Humans
;
Stomach Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Animals
;
Mice
;
Octamer Transcription Factor-1/metabolism*
;
Mice, Nude
;
Class Ia Phosphatidylinositol 3-Kinase/metabolism*
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic/genetics*
;
Male
;
Immunohistochemistry
;
Female
3.Effect and mechanism of alkaloids from Portulacae Herba on ulcerative colitis in mice based on TLR4/MyD88/NF-κB signaling pathway.
Jia-Hui ZHENG ; Ying-Ying SONG ; Tian-Ci ZHANG ; Wen-Ting WANG ; Zhi-Ping YANG ; Jin-Xia AI
China Journal of Chinese Materia Medica 2025;50(4):874-881
This study investigated the functions and regulatory mechanism of Portulacae Herba and its chemical components on the Toll-like receptor 4(TLR4)/myeloid differentiation primary response 88(MyD88)/nuclear factor kappa B(NF-κB) inflammatory signaling pathway in the colon tissue of mice with dextran sodium sulfate(DSS)-induced ulcerative colitis(UC). A total of 35 mice were randomly divided into groups, including a blank group, a model group, a mesalazine group(0. 5 g·kg~(-1)), and low, medium,and high dose alkaloids from Portulacae Herba groups(9, 18, 36 mg·kg~(-1)), and a combination treatment group, with 5 mice in each group. The blank group was given purified water, while the other groups were continuously given a 3% DSS solution for 7 days to induce the UC model. From day 8 onwards, the treatment group received oral gavage according to the prescribed doses for 14 days. The overall condition, body weight, stool characteristics, and presence of blood in the stool were recorded daily. After the experiment, the disease activity index(DAI) was assessed for each group, and colon length was measured. Histopathological changes in colon tissue were examined using hematoxylin-eosin(HE) staining. The levels of pro-inflammatory cytokines, tumor necrosis factor-α(TNF-α),and interleukin-1β( IL-1β) in serum were measured by enzyme-linked immunosorbent assay( ELISA). The protein and m RNA expression of TLR4, MyD88, and NF-κB in colon tissue were measured using Western blot and quantitative real-time PCR(qPCR).Compared to the blank group, the model group showed a significant decrease in body weight, a notable increase in DAI scores, a significant shortening of colon length, and evident histopathological damage. The levels of inflammatory cytokines TNF-α and IL-1β in the serum were significantly elevated, and the protein and m RNA expression of TLR4, MyD88, and NF-κB in colon tissue were significantly up-regulated. In contrast, the alkaloids from Portulacae Herba treatment groups significantly improved symptoms and reduced body weight loss in mice, decreased DAI scores, alleviated colon shortening, lowered serum levels of TNF-α and IL-1β,significantly down-regulated the expression levels of TLR4, MyD88, and NF-κB proteins and genes in colon tissue, as well as reduced histopathological damage. Therefore, the study suggests that alkaloids from Portulacae Herba can alleviate intestinal inflammation damage in DSS-induced UC mice, with its mechanism involving the TLR4/MyD88/NF-κB signaling pathway.
Animals
;
Colitis, Ulcerative/immunology*
;
Toll-Like Receptor 4/immunology*
;
Myeloid Differentiation Factor 88/metabolism*
;
Mice
;
NF-kappa B/metabolism*
;
Signal Transduction/drug effects*
;
Male
;
Alkaloids/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Female
;
Colon/metabolism*
;
Disease Models, Animal
4.Material basis of bitter taste and taste-effect relationship in Cistanche deserticola based on UPLC-Q-Orbitrap HRMS combined with molecular docking.
Li-Ying TIAN ; Ming-Jie LI ; Qiang HOU ; Zheng-Yuan WANG ; Ai-Sai-Ti GULIZIYE ; Jun-Ping HU
China Journal of Chinese Materia Medica 2025;50(6):1569-1580
Based on ultra-performance liquid chromatography-quadrupole-electrostatic field Orbitrap high-resolution mass spectrometry(UPLC-Q-Orbitrap HRMS) technology and molecular docking, the bitter-tasting substances(hereafter referred to as "bitter substances") in Cistanche deserticola extract were investigated, and the bitter taste and efficacy relationship was explored to lay the foundation for future research on de-bittering and taste correction. Firstly, UPLC-Q-Orbitrap HRMS was used for the qualitative analysis of the constituents of C. deserticola, and 69 chemical components were identified. These chemical components were then subjected to molecular docking with the bitter taste receptor, leading to the screening of 20 bitter substances, including 6 phenylethanol glycosides, 5 flavonoids, 3 phenolic acids, 2 cycloalkenyl ether terpenes, 2 alkaloids, and 2 other components. Nine batches of fresh C. deserticola samples were collected from the same origin but harvested at different months. These samples were divided into groups based on harvest month and plant part. The bitterness was quantified using an electronic tongue, and the content of six potential bitter-active compounds(pineconotyloside, trichothecene glycoside, tubulin A, iso-trichothecene glycoside, jinshihuaoside, and jingnipinoside) was determined by high-performance liquid chromatography(HPLC). The total content of phenylethanol glycosides, polysaccharides, alkaloids, flavonoids, and phenolic acids was determined using UV-visible spectrophotometry. Chemometric analyses were then conducted, including Pearson's correlation analysis, gray correlation analysis, and orthogonal partial least squares discriminant analysis(OPLS-DA), to identify the bitter components in C. deserticola. The results were consistent with the molecular docking findings, and the two methods mutually supported each other. Finally, network pharmacological predictions and analyses were performed to explore the relationship between the targets of bitter substances and their efficacy. The results indicated that key targets of the bitter substances included EGFR, PIK3CB, and PTK2. These substances may exert their bitter effects by acting on relevant disease targets, confirming that the bitter substances in C. deserticola are the material basis of its bitter taste efficacy. In conclusion, this study suggests that the phenylethanol glycosides, primarily pineconotyloside, mauritiana glycoside, and gibberellin, are the material basis for the "bitter taste" of C. deserticola. The molecular docking technique plays a guiding role in the screening of bitter substances in traditional Chinese medicine(TCM). The bitter substances in C. deserticola not only contribute to its bitter taste but also support the concept of the "taste-efficacy" relationship in TCM, providing valuable insights and references for future research in this area.
Molecular Docking Simulation
;
Taste
;
Chromatography, High Pressure Liquid
;
Cistanche/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Mass Spectrometry
5.Identification and expression analysis of B3 gene family in Panax ginseng.
Yu-Long WANG ; Ai-Min WANG ; Jing-Hui YU ; Si-Zhang LIU ; Ge JIN ; Kang-Yu WANG ; Ming-Zhu ZHAO ; Yi WANG ; Mei-Ping ZHANG
China Journal of Chinese Materia Medica 2025;50(16):4593-4609
Panax ginseng as a perennial herb of Araliaceae, exhibits pharmacological effects such as central nervous system stimulation, anti-tumor properties, and cardiovascular and cerebrovascular protection. The B3 gene family plays a crucial role in growth and development, antioxidant activity, stress resistance, and secondary metabolism regulation of plants and has been extensively studied in various plants. However, the identification and analysis of the B3 gene family in P. ginseng have not been reported. In this study, a total of 145 B3 genes(PgB3s) with complete open reading frames(ORF) were identified from P. ginseng and classified into five subfamilies based on domain types. Through correlation analysis with ginsenoside content, SNP/InDels analysis, and interaction analysis with key enzyme genes, 15 PgB3 transcripts were found to be significantly correlated with ginsenoside content and exhibited a close interaction network with key enzyme genes involved in ginsenoside biosynthesis, which indicated that these genes may participate in the regulation of ginsenoside biosynthesis. Additionally, this study found that PgB3 genes exhibited induced expression in response to methyl jasmonate(MeJA) stress, which aligned with the presence of abundant stress response elements in their promoters, confirming the important role of the B3 gene family in P. ginseng in stress resistance. The results of this study revealed the potential functions of PgB3 genes in ginsenoside biosynthesis and stress response, providing a significant theoretical basis for further research on the functions of PgB3 genes and their regulatory mechanisms.
Panax/metabolism*
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Ginsenosides/biosynthesis*
;
Multigene Family
;
Phylogeny
6.A Clinical Study of Children with SIL-TAL1-Positive Acute T-Lymphoblastic Leukemia.
Yu-Juan XUE ; Yu WANG ; Le-Ping ZHANG ; Ai-Dong LU ; Yue-Ping JIA ; Hui-Min ZENG
Journal of Experimental Hematology 2025;33(5):1262-1268
OBJECTIVE:
To explore the clinical characteristics and prognosis of children with SIL-TAL1-positive T-cell acute lymphoblastic leukemia ( SIL-TAL1+ T-ALL).
METHODS:
The clinical data of 110 children with newly diagnosed T-ALL admitted to the pediatric department of our hospital from January 2010 to December 2018 were reviewed to compare the clinical characteristics, treatment response and prognosis between SIL-TAL1+ group and SIL-TAL1-group.
RESULTS:
Among the 110 children with T-ALL, 25 cases (22.7%) were in the SIL-TAL1+ group and 85 cases (77.3%) in the SIL-TAL1- group. The white blood cell (WBC) count in the SIL-TAL1+ group was significantly higher than that in the SIL-TAL1- group (P < 0.05), while the other clinical characteristics and treatment response were not significantly different between the two groups. The 5-year overall survival (OS) rates of SIL-TAL1+ group and SIL-TAL1- group were 80.0% and 75.5%, and 5-year disease-free survival (DFS) rates were 76.0% and 72.9%, respectively. There were no significant differences in OS rate and DFS rate between the two groups ( P >0.05). In children aged < 10 years, the 5-year OS rate of SIL-TAL1+ group and SIL-TAL1- group was 100% and 75.1%, respectively, and the difference between the two groups was statistically significant (P < 0.05).
CONCLUSION
Although the WBC level is significantly higher in children with SIL-TAL1+ T-ALL than that in those with SIL-TAL1- T-ALL, the treatment efficacy is similar between the two groups. In children aged < 10 years, the longterm survival rate is superior in the SIL-TAL1+ group.
Humans
;
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis*
;
Prognosis
;
Child
;
Male
;
Female
;
Survival Rate
;
T-Cell Acute Lymphocytic Leukemia Protein 1
;
Child, Preschool
;
Oncogene Proteins, Fusion
;
Leukocyte Count
7.Glucocorticoid Discontinuation in Patients with Rheumatoid Arthritis under Background of Chinese Medicine: Challenges and Potentials Coexist.
Chuan-Hui YAO ; Chi ZHANG ; Meng-Ge SONG ; Cong-Min XIA ; Tian CHANG ; Xie-Li MA ; Wei-Xiang LIU ; Zi-Xia LIU ; Jia-Meng LIU ; Xiao-Po TANG ; Ying LIU ; Jian LIU ; Jiang-Yun PENG ; Dong-Yi HE ; Qing-Chun HUANG ; Ming-Li GAO ; Jian-Ping YU ; Wei LIU ; Jian-Yong ZHANG ; Yue-Lan ZHU ; Xiu-Juan HOU ; Hai-Dong WANG ; Yong-Fei FANG ; Yue WANG ; Yin SU ; Xin-Ping TIAN ; Ai-Ping LYU ; Xun GONG ; Quan JIANG
Chinese journal of integrative medicine 2025;31(7):581-589
OBJECTIVE:
To evaluate the dynamic changes of glucocorticoid (GC) dose and the feasibility of GC discontinuation in rheumatoid arthritis (RA) patients under the background of Chinese medicine (CM).
METHODS:
This multicenter retrospective cohort study included 1,196 RA patients enrolled in the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) from September 1, 2019 to December 4, 2023, who initiated GC therapy. Participants were divided into the Western medicine (WM) and integrative medicine (IM, combination of CM and WM) groups based on medication regimen. Follow-up was performed at least every 3 months to assess dynamic changes in GC dose. Changes in GC dose were analyzed by generalized estimator equation, the probability of GC discontinuation was assessed using Kaplan-Meier curve, and predictors of GC discontinuation were analyzed by Cox regression. Patients with <12 months of follow-up were excluded for the sensitivity analysis.
RESULTS:
Among 1,196 patients (85.4% female; median age 56.4 years), 880 (73.6%) received IM. Over a median 12-month follow-up, 34.3% (410 cases) discontinued GC, with significantly higher rates in the IM group (40.8% vs. 16.1% in WM; P<0.05). GC dose declined progressively, with IM patients demonstrating faster reductions (median 3.75 mg vs. 5.00 mg in WM at 12 months; P<0.05). Multivariate Cox analysis identified age <60 years [P<0.001, hazard ratios (HR)=2.142, 95% confidence interval (CI): 1.523-3.012], IM therapy (P=0.001, HR=2.175, 95% CI: 1.369-3.456), baseline GC dose ⩽7.5 mg (P=0.003, HR=1.637, 95% CI: 1.177-2.275), and absence of non-steroidal anti-inflammatory drugs use (P=0.001, HR=2.546, 95% CI: 1.432-4.527) as significant predictors of GC discontinuation. Sensitivity analysis (545 cases) confirmed these findings.
CONCLUSIONS
RA patients receiving CM face difficulties in following guideline-recommended GC discontinuation protocols. IM can promote GC discontinuation and is a promising strategy to reduce GC dependency in RA management. (Trial registration: ClinicalTrials.gov, No. NCT05219214).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Arthritis, Rheumatoid/drug therapy*
;
Glucocorticoids/therapeutic use*
;
Medicine, Chinese Traditional
;
Retrospective Studies
9.Preparation and in vitro-in vivo evaluation of suvorexant orodispersible films
Peng ZHAO ; Cong-hui LI ; Si-yi SHUAI ; Bing YANG ; Hui ZHANG ; Nan LIU ; Ai-ping ZHENG ; Yong-jun WANG ; Zeng-ming WANG
Acta Pharmaceutica Sinica 2024;59(9):2659-2664
Orodispersible films (oral dispersible films), a novel form of oral solid dosage forms, are widely used for patients with dysphagia and those with uncontrollable autonomic behavior. In this study, suvorexant orodispersible film was prepared by hot melt extrusion technology, and the disintegration time, mechanical properties,
10.Rheology guided the preparation of suvorexant-copovidone solid dispersions via hot melt extrusion technology
Peng ZHAO ; Cong-hui LI ; Si-yi SHUAI ; Bing YANG ; Hui ZHANG ; Nan LIU ; Zeng-ming WANG ; Yong-jun WANG ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2024;59(8):2396-2403
The rheological properties of drug and carrier materials have a wide range of guiding significance for the formulation and process development of solid dispersions. In this study, the rheological properties of materials with different drug carrier ratios were systematically studied with suvorexant as the model drug and copovidone as the carrier material, which provided a sufficient basis for determining the formulation and process of solid dispersions. The optimal suvorexant-copovidone ratio obtained by oscillating temperature scanning was 1∶4. If the ratio is greater than 1∶ 4, the glass transformation temperature of the material will increase significantly, and the solubilization effect of the solid dispersion will show a downward trend. The results of oscillation temperature scanning and oscillation temperature sweep can show that when the extrusion temperature is greater than 150 ℃, the viscosity of the material is less than 10 000 Pa·s, and the melt can be extruded smoothly, and the best extrusion temperature of 160-180 ℃ can be obtained by combining the dissolution results. Finally, the dissolution of suvorexant tablets guided by rheological property studies in multiple media is similar to that of the commercially available tablets Belsomra. Therefore, rheological studies can screen and optimize the formulation and process of suvorexant solid dispersions at the mechanism level, which is of great significance to improve the success rate of R&D and shorten the R&D cycle of solid dispersions prepared by hot melt extrusion.

Result Analysis
Print
Save
E-mail