1.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
2.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
3.POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration.
Yizhi XIAO ; Ping YANG ; Wushuang XIAO ; Zhen YU ; Jiaying LI ; Xiaofeng LI ; Jianjiao LIN ; Jieming ZHANG ; Miaomiao PEI ; Linjie HONG ; Juanying YANG ; Zhizhao LIN ; Ping JIANG ; Li XIANG ; Guoxin LI ; Xinbo AI ; Weiyu DAI ; Weimei TANG ; Jide WANG
Chinese Medical Journal 2025;138(7):838-850
BACKGROUND:
The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown.
METHODS:
Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice.
RESULTS:
POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo . Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p , and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p , miR-29a-3p , PIK3R1 , and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1 , PIK3R1 , and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples.
CONCLUSIONS
The POU2F1 - miR-29b-3p / miR-29a-3p-PIK3R1 / PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
MicroRNAs/metabolism*
;
Humans
;
Stomach Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Animals
;
Mice
;
Octamer Transcription Factor-1/metabolism*
;
Mice, Nude
;
Class Ia Phosphatidylinositol 3-Kinase/metabolism*
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic/genetics*
;
Male
;
Immunohistochemistry
;
Female
4.Astragaloside IV Alleviates Podocyte Injury in Diabetic Nephropathy through Regulating IRE-1α/NF-κ B/NLRP3 Pathway.
Da-Lin SUN ; Zi-Yi GUO ; Wen-Yuan LIU ; Lin ZHANG ; Zi-Yuan ZHANG ; Ya-Ling HU ; Su-Fen LI ; Ming-Yu ZHANG ; Guang ZHANG ; Jin-Jing WANG ; Jing-Ai FANG
Chinese journal of integrative medicine 2025;31(5):422-433
OBJECTIVE:
To investigate the effects of astragaloside IV (AS-IV) on podocyte injury of diabetic nephropathy (DN) and reveal its potential mechanism.
METHODS:
In in vitro experiment, podocytes were divided into 4 groups, normal, high glucose (HG), inositol-requiring enzyme 1 (IRE-1) α activator (HG+thapsigargin 1 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups. Additionally, podocytes were divided into 4 groups, including normal, HG, AS-IV (HG+AS-IV 20 µmol/L), and IRE-1α inhibitor (HG+STF-083010, 20 µmol/L) groups, respectively. After 24 h treatment, the morphology of podocytes and endoplasmic reticulum (ER) was observed by electron microscopy. The expressions of glucose-regulated protein 78 (GRP78) and IRE-1α were detected by cellular immunofluorescence. In in vivo experiment, DN rat model was established via a consecutive 3-day intraperitoneal streptozotocin (STZ) injections. A total of 40 rats were assigned into the normal, DN, AS-IV [AS-IV 40 mg/(kg·d)], and IRE-1α inhibitor [STF-083010, 10 mg/(kg·d)] groups (n=10), respectively. The general condition, 24-h urine volume, random blood glucose, urinary protein excretion rate (UAER), urea nitrogen (BUN), and serum creatinine (SCr) levels of rats were measured after 8 weeks of intervention. Pathological changes in the renal tissue were observed by hematoxylin and eosin (HE) staining. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were used to detect the expressions of GRP78, IRE-1α, nuclear factor kappa Bp65 (NF-κBp65), interleukin (IL)-1β, NLR family pyrin domain containing 3 (NLRP3), caspase-1, gasdermin D-N (GSDMD-N), and nephrin at the mRNA and protein levels in vivo and in vitro, respectively.
RESULTS:
Cytoplasmic vacuolation and ER swelling were observed in the HG and IRE-1α activator groups. Podocyte morphology and ER expansion were improved in AS-IV and IRE-1α inhibitor groups compared with HG group. Cellular immunofluorescence showed that compared with the normal group, the fluorescence intensity of GRP78 and IRE-1α in the HG and IRE-1α activator groups were significantly increased whereas decreased in AS-IV and IRE-1α inhibitor groups (P<0.05). Compared with the normal group, the mRNA and protein expressions of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N in the HG group was increased (P<0.05). Compared with HG group, the expression of above indices was decreased in the AS-IV and IRE-1α inhibitor groups, and the expression in the IRE-1α activator group was increased (P<0.05). The expression of nephrin was decreased in the HG group, and increased in AS-IV and IRE-1α inhibitor groups (P<0.05). The in vivo experiment results revealed that compared to the normal group, the levels of blood glucose, triglyceride, total cholesterol, BUN, blood creatinine and urinary protein in the DN group were higher (P<0.05). Compared with DN group, the above indices in AS-IV and IRE-1α inhibitor groups were decreased (P<0.05). HE staining revealed glomerular hypertrophy, mesangial widening and mesangial cell proliferation in the renal tissue of the DN group. Compared with the DN group, the above pathological changes in renal tissue of AS-IV and IRE-1α inhibitor groups were alleviated. Quantitative RT-PCR and Western blot results of GRP78, IRE-1α, NF-κ Bp65, IL-1β, NLRP3, caspase-1 and GSDMD-N were consistent with immunofluorescence analysis.
CONCLUSION
AS-IV could reduce ERS and inflammation, improve podocyte pyroptosis, thus exerting a podocyte-protective effect in DN, through regulating IRE-1α/NF-κ B/NLRP3 signaling pathway.
Podocytes/metabolism*
;
Animals
;
Diabetic Nephropathies/metabolism*
;
Saponins/therapeutic use*
;
Triterpenes/therapeutic use*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Male
;
Rats, Sprague-Dawley
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Endoribonucleases/metabolism*
;
Endoplasmic Reticulum Chaperone BiP
;
Rats
;
Diabetes Mellitus, Experimental/complications*
;
Endoplasmic Reticulum/metabolism*
;
Multienzyme Complexes
5.Colon Dialysis with Yishen Decoction Improves Autophagy Disorder in Intestinal Mucosal Epithelial Cells of Chronic Renal Failure by Regulating SIRT1 Pathway.
Yan-Jun FAN ; Jing-Ai FANG ; Su-Fen LI ; Ting LIU ; Wen-Yuan LIU ; Ya-Ling HU ; Rui-Hua WANG ; Hui LI ; Da-Lin SUN ; Guang ZHANG ; Zi-Yuan ZHANG
Chinese journal of integrative medicine 2025;31(10):899-907
OBJECTIVE:
To explore the mechanism of colon dialysis with Yishen Decoction (YS) in improving the autophagy disorder of intestinal epithelial cells in chronic renal failure (CRF) in vivo and in vitro.
METHODS:
Thirty male SD rats were randomly divided into normal, CRF, and colonic dialysis with YS groups by a random number table method (n=10). The CRF model was established by orally gavage of adenine 200 mg/(kg•d) for 4 weeks. CRF rats in the YS group were treated with colonic dialysis using YS 20 g/(kg•d) for 14 consecutive days. The serum creatinine (SCr) and urea nitrogen (BUN) levels were detected by enzyme-linked immunosorbent assay. Pathological changes of kidney and colon tissues were observed by hematoxylin and eosin staining. Autophagosome changes in colonic epithelial cells was observed with electron microscopy. In vitro experiments, human colon cancer epithelial cells (T84) were cultured and divided into normal, urea model (74U), YS colon dialysis, autophagy activator rapamycin (Ra), autophagy inhibitor 3-methyladenine (3-MA), and SIRT1 activator resveratrol (Re) groups. RT-PCR and Western blot were used to detect the mRNA and protein expressions of zonula occludens-1 (ZO-1), Claudin-1, silent information regulator sirtuin 1 (SIRT1), LC3, and Beclin-1 both in vitro and in vivo.
RESULTS:
Colonic dialysis with YS decreased SCr and BUN levels in CRF rats (P<0.05), and alleviated the pathological changes of renal and colon tissues. Expressions of SIRT1, ZO-1, Claudin-1, Beclin-1, and LC3II/I were increased in the YS group compared with the CRF group in vivo (P<0.05). In in vitro study, compared with normal group, the expressions of SIRT1, ZO-1, and Claudin-1 were decreased, and expressions of Beclin-1, and LC3II/I were increased in the 74U group (P<0.05). Compared with the 74U group, expressions of SIRT1, ZO-1, and Claudin-1 were increased, whereas Beclin-1, and LC3II/I were decreased in the YS group (P<0.05). The treatment of 3-MA and rapamycin regulated autophagy and the expression of SIRT1. SIRT1 activator intervention up-regulated autophagy as well as the expressions of ZO-1 and Claudin-1 compared with the 74U group (P<0.05).
CONCLUSION
Colonic dialysis with YS could improve autophagy disorder and repair CRF intestinal mucosal barrier injury by regulating SIRT1 expression in intestinal epithelial cells.
Animals
;
Sirtuin 1/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Autophagy/drug effects*
;
Male
;
Intestinal Mucosa/drug effects*
;
Rats, Sprague-Dawley
;
Epithelial Cells/metabolism*
;
Colon/drug effects*
;
Humans
;
Kidney Failure, Chronic/drug therapy*
;
Signal Transduction/drug effects*
;
Renal Dialysis
;
Rats
;
Kidney/drug effects*
6.Expert consensus on the clinical strategies for orthodontic treatment with clear aligners.
Yan WANG ; Hu LONG ; Zhihe ZHAO ; Ding BAI ; Xianglong HAN ; Jun WANG ; Bing FANG ; Zuolin JIN ; Hong HE ; Yuxin BAI ; Weiran LI ; Min HU ; Yanheng ZHOU ; Hong AI ; Yuehua LIU ; Yang CAO ; Jun LIN ; Huang LI ; Jie GUO ; Wenli LAI
International Journal of Oral Science 2025;17(1):19-19
Clear aligner treatment is a novel technique in current orthodontic practice. Distinct from traditional fixed orthodontic appliances, clear aligners have different material features and biomechanical characteristics and treatment efficiencies, presenting new clinical challenges. Therefore, a comprehensive and systematic description of the key clinical aspects of clear aligner treatment is essential to enhance treatment efficacy and facilitate the advancement and wide adoption of this new technique. This expert consensus discusses case selection and grading of treatment difficulty, principle of clear aligner therapy, clinical procedures and potential complications, which are crucial to the clinical success of clear aligner treatment.
Humans
;
Consensus
;
Orthodontic Appliance Design
;
Orthodontic Appliances, Removable
;
Tooth Movement Techniques/methods*
;
Malocclusion/therapy*
;
Orthodontics, Corrective/instrumentation*
7.Standardized operational protocol for the China Human Brain Bank Consortium(2nd edition)
Xue WANG ; Zhen CHEN ; Juan-Li WU ; Nai-Li WANG ; Di ZHANG ; Juan DU ; Liang YU ; Wan-Ru DUAN ; Peng-Hao LIU ; Han-Lin ZHANG ; Can HUANG ; Yue-Shan PIAO ; Ke-Qing ZHU ; Ai-Min BAO ; Jing ZHANG ; Yi SHEN ; Chao MA ; Wen-Ying QIU ; Xiao-Jing QIAN
Acta Anatomica Sinica 2024;55(6):734-745
Human brain banks use a standardized protocol to collect,process and store post-mortem human brains and related tissues,along with relevant clinical information,and to provide the tissue samples and data as a resource to foster neuroscience research according to a standardized operating protocols(SOP).Human brain bank serves as the foundation for neuroscience research and the diagnosis of neurological disorders,highlighting the crucial rule of ensuring the consistency of standardized quality for brain tissue samples.The first version of SOP in 2017 was published by the China Human Brain Bank Consortium.As members increases from different regions in China,a revised SOP was drafted by experts from the China Human Brain Bank Consortium to meet the growing demands for neuroscience research.The revised SOP places a strong emphasis on ethical standards,incorporates neuropathological evaluation of brain regions,and provides clarity on spinal cord sampling and pathological assessment.Notable enhancements in this updated version of the SOP include reinforced ethical guidelines,inclusion of matching controls in recruitment,and expansion of brain regions to be sampled for neuropathological evaluation.
8.A multi-center epidemiological study on pneumococcal meningitis in children from 2019 to 2020
Cai-Yun WANG ; Hong-Mei XU ; Gang LIU ; Jing LIU ; Hui YU ; Bi-Quan CHEN ; Guo ZHENG ; Min SHU ; Li-Jun DU ; Zhi-Wei XU ; Li-Su HUANG ; Hai-Bo LI ; Dong WANG ; Song-Ting BAI ; Qing-Wen SHAN ; Chun-Hui ZHU ; Jian-Mei TIAN ; Jian-Hua HAO ; Ai-Wei LIN ; Dao-Jiong LIN ; Jin-Zhun WU ; Xin-Hua ZHANG ; Qing CAO ; Zhong-Bin TAO ; Yuan CHEN ; Guo-Long ZHU ; Ping XUE ; Zheng-Zhen TANG ; Xue-Wen SU ; Zheng-Hai QU ; Shi-Yong ZHAO ; Lin PANG ; Hui-Ling DENG ; Sai-Nan SHU ; Ying-Hu CHEN
Chinese Journal of Contemporary Pediatrics 2024;26(2):131-138
Objective To investigate the clinical characteristics and prognosis of pneumococcal meningitis(PM),and drug sensitivity of Streptococcus pneumoniae(SP)isolates in Chinese children.Methods A retrospective analysis was conducted on clinical information,laboratory data,and microbiological data of 160 hospitalized children under 15 years old with PM from January 2019 to December 2020 in 33 tertiary hospitals across the country.Results Among the 160 children with PM,there were 103 males and 57 females.The age ranged from 15 days to 15 years,with 109 cases(68.1% )aged 3 months to under 3 years.SP strains were isolated from 95 cases(59.4% )in cerebrospinal fluid cultures and from 57 cases(35.6% )in blood cultures.The positive rates of SP detection by cerebrospinal fluid metagenomic next-generation sequencing and cerebrospinal fluid SP antigen testing were 40% (35/87)and 27% (21/78),respectively.Fifty-five cases(34.4% )had one or more risk factors for purulent meningitis,113 cases(70.6% )had one or more extra-cranial infectious foci,and 18 cases(11.3% )had underlying diseases.The most common clinical symptoms were fever(147 cases,91.9% ),followed by lethargy(98 cases,61.3% )and vomiting(61 cases,38.1% ).Sixty-nine cases(43.1% )experienced intracranial complications during hospitalization,with subdural effusion and/or empyema being the most common complication[43 cases(26.9% )],followed by hydrocephalus in 24 cases(15.0% ),brain abscess in 23 cases(14.4% ),and cerebral hemorrhage in 8 cases(5.0% ).Subdural effusion and/or empyema and hydrocephalus mainly occurred in children under 1 year old,with rates of 91% (39/43)and 83% (20/24),respectively.SP strains exhibited complete sensitivity to vancomycin(100% ,75/75),linezolid(100% ,56/56),and meropenem(100% ,6/6).High sensitivity rates were also observed for levofloxacin(81% ,22/27),moxifloxacin(82% ,14/17),rifampicin(96% ,25/26),and chloramphenicol(91% ,21/23).However,low sensitivity rates were found for penicillin(16% ,11/68)and clindamycin(6% ,1/17),and SP strains were completely resistant to erythromycin(100% ,31/31).The rates of discharge with cure and improvement were 22.5% (36/160)and 66.2% (106/160),respectively,while 18 cases(11.3% )had adverse outcomes.Conclusions Pediatric PM is more common in children aged 3 months to under 3 years.Intracranial complications are more frequently observed in children under 1 year old.Fever is the most common clinical manifestation of PM,and subdural effusion/emphysema and hydrocephalus are the most frequent complications.Non-culture detection methods for cerebrospinal fluid can improve pathogen detection rates.Adverse outcomes can be noted in more than 10% of PM cases.SP strains are high sensitivity to vancomycin,linezolid,meropenem,levofloxacin,moxifloxacin,rifampicin,and chloramphenicol.[Chinese Journal of Contemporary Pediatrics,2024,26(2):131-138]
9.Study on the Expression Levels of Serum miR-139-5p,HDAC4 and GFAP in Neonates with Hypoxic-ischemic Encephalopathy and Their Clinical Value
Lirong ZHANG ; Ai LIN ; Li YANG
Journal of Modern Laboratory Medicine 2024;39(1):55-60
Objective To analyze the relationship between serum micro RNA(miR)139-5p,histone deacetylase 4(HDAC4)and glial fibrillary acidic protein(GFAP)and the severity of brain injury in neonatal hypoxic-ischemic encephalopathy(HIE).Methods From January 2017 to March 2022,72 HIE neonates born in Guangyuan Central Hospital were collected as research objects(study group),while 75 healthy full-term newborns were the control group.The expression levels of miR-139-5p and HDAC4 in serum were detected by real-time fluorescence quantitative PCR.ELISA was applied to detect serum GFAP level.Binary logistic regression was applied to analyze the factors affecting the occurrence of severe brain injury in children with HIE.Results Compared with the control group,the serum GFAP(1.30±0.37ng/L vs 0.50±0.15 ng/L)and HDAC4 relative expression level(2.05±0.39 vs 1.02±0.21)in the study group were increased,the relative expression level of miR-139-5p(0.63±0.14 vs 1.01±0.22)and the NBNA score(33.20±1.43 score vs 39.85±2.23 score)was decreased,the differences were statistically significant(t=17.304,20.046,12.436,21.424,all P<0.05).Compared with the mild to moderate group,the serum GFAP level(1.61±0.47ng/L vs 1.16±0.33ng/L),HDAC4 relative expression level(2.43±0.37 vs 1.87±0.40),miR-139-5p(0.38±0.10 vs 0.74±0.16)and NBNA score(30.52±1.54 score vs 34.46±1.38 score)relative expression level in the severe group were increased,and the differences were statistically significant(t=4.690,5.669,9.900,10.884,all P<0.05).Logistic regression analysis showed that low expression of miR-139-5p,high expression of HDAC4,low NBNA score and low Apgar score within 1 min after birth were risk factors for severe brain injury in HIE children(Wald χ2=5.772~6.969,OR=1.519~1.709,all P<0.05).Pearson analysis showed that the expression level of serum miR-139-5p was negatively correlated with GFAP,HDAC4(r=-0.416,-0.579,all P<0.05),while the expression level of serum HDAC4 was positively correlated with GFAP(r= 0.437,P<0.05).Spearman analysis showed that the expression level of serum miR-139-5p was positively correlated with NBNA score,Apgar score within 1 min after birth,and Apgar score within 5 min after birth(r= 0.398,0.367,0.348,all P<0.05).Serum HDAC4 expression level was negatively correlated with NBNA score,Apgar score within 1 min after birth,and Apgar score within 5 min after birth(r=-0.364,-0.345,-0.332,all P<0.05).Conclusion The expression of miR-139-5p in the serum of children with HIE was decreased,and the expression of HDAC4 was increased,miR-139-5p and HDAC4 were associated with the severity of brain injury in children with HIE.
10.Ku70 Functions as an RNA Helicase to Regulate miR-124 Maturation and Neuronal Cell Differentiation
Ai-Xue HUANG ; Rui-Ting LI ; Yue-Chao ZHAO ; Jie LI ; Hui LI ; Xue-Feng DING ; Lin WANG ; Can XIAO ; Xue-Mei LIU ; Cheng-Feng QIN ; Ning-Sheng SHAO
Progress in Biochemistry and Biophysics 2024;51(6):1418-1433
ObjectiveHuman Ku70 protein mainly involves the non-homologous end joining (NHEJ) repair of double-stranded DNA breaks (DSB) through its DNA-binding properties, and it is recently reported having an RNA-binding ability. This paper is to explore whether Ku70 has RNA helicase activity and affects miRNA maturation. MethodsRNAs bound to Ku protein were analyzed by RNA immunoprecipitation sequencing (RIP-seq) and bioinfomatic anaylsis. The expression relationship between Ku protein and miRNAs was verified by Western blot (WB) and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assays. Binding ability of Ku protein to the RNAs was tested by biolayer interferometry (BLI) assay. RNA helicase activity of Ku protein was identified with EMSA assay. The effect of Ku70 regulated miR-124 on neuronal differentiation was performed by morphology analysis, WB and immunofluorescence assays with or without Zika virus (ZIKV) infection. ResultsWe revealed that the Ku70 protein had RNA helicase activity and affected miRNA maturation. Deficiency of Ku70 led to the up-regulation of a large number of mature miRNAs, especially neuronal specific miRNAs like miR-124. The knockdown of Ku70 promoted neuronal differentiation in human neural progenitor cells (hNPCs) and SH-SY5Y cells by boosting miR-124 maturation. Importantly, ZIKV infection reduced the expression of Ku70 whereas increased expression of miR-124 in hNPCs, and led to morphologically neuronal differentiation. ConclusionOur study revealed a novel function of Ku70 as an RNA helicase and regulating miRNA maturation. The reduced expression of Ku70 with ZIKV infection increased the expression of miR-124 and led to the premature differentiation of embryonic neural progenitor cells, which might be one of the causes of microcephaly.

Result Analysis
Print
Save
E-mail