1.Experimental study on promotion of skin radiation damage repair by icarin via HIF-2α/VEGF/Notch pathway to enhance the paracrine function of adipose-derived stem cells.
Yuer ZUO ; Shuangyi LI ; Siyu TAN ; Xiaohao HU ; Zhou LI ; Haoxi LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):881-890
OBJECTIVE:
To investigate the effectiveness and preliminary mechanisms of icariin (ICA) in enhancing the reparative effects of adipose-derived stem cells (ADSCs) on skin radiation damagies in rats.
METHODS:
Twelve SPF-grade Sprague Dawley rats [body weight (220±10) g] were subjected to a single dose of 10 Gy X-ray irradiation on a 1.5 cm×1.5 cm area of their dorsal skin, with a dose rate of 200 cGy/min to make skin radiation damage model. After successful modelling, the rats were randomly divided into 4 groups ( n=3), and on day 2, the corresponding cells were injected subcutaneously into the irradiated wounds: group A received 0.1 mL of rat ADSCs (1×10 7cells/mL), group B received 0.1 mL of rat ADSCs (1×10 7cells/mL)+1 μmol/L ICA (0.1 mL), group C received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a hypoxia-inducible factor 2α (HIF-2α) inhibitor+1 μmol/L ICA (0.1 mL), and group D received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a Notch1 inhibitor+1 μmol/L ICA (0.1 mL). All treatments were administered as single doses. The skin injury in the irradiated areas of the rats was observed continuously from day 1 to day 7 after modelling. On day 28, the rats were sacrificed, and skin tissues from the irradiated areas were harvested for histological examination (HE staining and Masson staining) to assess the repair status and for quantitative collagen content detection. Immunohistochemical staining was performed to detect CD31 expression, while Western blot and real-time fluorescence quantitative PCR (qRT-PCR) were used to measure the protein and mRNA relative expression levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor BB (PDGF-BB), fibroblast growth factor 2 (FGF-2), interleukin 10 (IL-10), transforming growth factor β (TGF-β), HIF-2α, and Notch1, 2, and 3.
RESULTS:
All groups exhibited skin ulcers and redness after irradiation. On day 3, exudation of tissue fluid was observed in all groups. On day 7, group B showed significantly smaller skin injury areas compared to the other 3 groups. On day 28, histological examination revealed that the epidermis was thickened and the dermal fibers were slightly disordered with occasional inflammatory cell aggregation in group A. In group B, the epidermis appeared more normal, the dermal fibers were more orderly, and there was an increase in new blood vessels without significant inflammatory cell aggregation. In contrast, groups C and D showed significantly increased epidermal thickness, disordered and disrupted dermal fibers. Group B had higher collagen fiber content than the other 3 groups, and group D had lower content than group A, with significant differences ( P<0.05). Immunohistochemical staining showed that group B had significantly higher CD31 expression than the other 3 groups, while groups C and D had lower expression than group A, with significant differences ( P<0.05). Western blot and qRT-PCR results indicated that group B had significantly higher relative expression levels of VEGF, PDGF-BB, FGF-2, IL-10, TGF-β, HIF-2α, and Notch1, 2, and 3 proteins and mRNAs compared to the other 3 groups ( P<0.05).
CONCLUSION
ICA may enhance the reparative effects of ADSCs on rat skin radiation damage by promoting angiogenesis and reducing inflammatory responses through the HIF-2α-VEGF-Notch signaling pathway.
Animals
;
Rats, Sprague-Dawley
;
Skin/pathology*
;
Rats
;
Vascular Endothelial Growth Factor A/genetics*
;
Basic Helix-Loop-Helix Transcription Factors/genetics*
;
Signal Transduction
;
Flavonoids/pharmacology*
;
Adipose Tissue/cytology*
;
Stem Cells/cytology*
;
Receptors, Notch/metabolism*
;
Radiation Injuries, Experimental/metabolism*
;
Wound Healing/drug effects*
;
Male
2.Astragalus polysaccharides improve adipose tissue aging in naturally aged mice via indole-3-lactic acid.
Yi-Yang BAO ; Ming-Xiao LI ; Xin-Xin GAO ; Wen-Jing WEI ; Wen-Jin HUANG ; Li-Zhong LIN ; Hao WANG ; Ning-Ning ZHENG ; Hou-Kai LI
China Journal of Chinese Materia Medica 2024;49(22):5998-6007
Plant polysaccharides are effective components that widely present in traditional Chinese medicine(TCM), exhibiting rich biological activities. However, as most plant polysaccharides cannot be directly absorbed and utilized by the human digestive system, it is now believed that their mode of action mainly involves interaction with intestinal microbiota, leading to the production of functional small molecules. The efficacy of Astragalus polysaccharide(APS) is extensive, including weight loss, improvement of fatty liver, reduction of blood lipids, and enhancement of insulin sensitivity, which may also be related to the regulation of intestinal microbiota. Adipose tissue senescence is an important characteristic of the physiological aging process in the body, often occurring prior to the aging of other important organs. Its main features include the accumulation of senescent cells and exacerbation of inflammation within the tissue. Therefore, to explore the potential protective effects of APS on aging, the improvement of adipose tissue aging phenotype in naturally aging mice was observed using APS, and combined with metagenomic metabolomics, corresponding microbial metabolic functional molecules were identified. Furthermore, functional tests in cell aging models were conducted. The results showed that APS significantly improved the adipocyte aging characteristics of naturally aging mice: specifically reducing aging-induced adipocyte hypertrophy; decreasing the protein expression of aging markers cyclin-dependent kinase inhibitor p21(P21) and multiple tumor suppressor 1(P16); lowering the tissue inflammation reaction. Metagenomic metabolomic analysis of serum from mice in each group revealed that APS significantly increased the content of indole-3-lactic acid(ILA) in naturally aging mice. Further in vitro studies showed that ILA could improve the aging of 3T3-L1 mouse embryonic fibroblasts induced by bleomycin, reduce the protein expression of the aging marker P21, alleviate inflammation, and enhance the ability of preadipocytes to mature. Therefore, APS had the efficacy of protecting naturally aging mice, and its action may be related to the increase in the intestinal microbiota metabolite ILA. This study suggested that TCM may serve as an important entry point for explaining the mechanism of action of TCM by regulating intestinal microbiota and their functional metabolites.
Animals
;
Mice
;
Aging/drug effects*
;
Adipose Tissue/metabolism*
;
Polysaccharides/pharmacology*
;
Indoles/pharmacology*
;
Male
;
Astragalus Plant/chemistry*
;
3T3-L1 Cells
;
Humans
;
Adipocytes/cytology*
;
Mice, Inbred C57BL
;
Cellular Senescence/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Gastrointestinal Microbiome/drug effects*
3.Supplementation of Fermented Barley Extracts with Lactobacillus Plantarum dy-1 Inhibits Obesity via a UCP1-dependent Mechanism.
Xiang XIAO ; Juan BAI ; Ming Song LI ; Jia Yan ZHANG ; Xin Juan SUN ; Ying DONG
Biomedical and Environmental Sciences 2019;32(8):578-591
OBJECTIVE:
We aimed to explore how fermented barley extracts with Lactobacillus plantarum dy-1 (LFBE) affected the browning in adipocytes and obese rats.
METHODS:
In vitro, 3T3-L1 cells were induced by LFBE, raw barley extraction (RBE) and polyphenol compounds (PC) from LFBE to evaluate the adipocyte differentiation. In vivo, obese SD rats induced by high fat diet (HFD) were randomly divided into three groups treated with oral gavage: (a) normal control diet with distilled water, (b) HFD with distilled water, (c) HFD with 800 mg LFBE/kg body weight (bw).
RESULTS:
In vitro, LFBE and the PC in the extraction significantly inhibited adipogenesis and potentiated browning of 3T3-L1 preadipocytes, rather than RBE. In vivo, we observed remarkable decreases in the body weight, serum lipid levels, white adipose tissue (WAT) weights and cell sizes of brown adipose tissues (BAT) in the LFBE group after 10 weeks. LFBE group could gain more mass of interscapular BAT (IBAT) and promote the dehydrogenase activity in the mitochondria. And LFBE may potentiate process of the IBAT thermogenesis and epididymis adipose tissue (EAT) browning via activating the uncoupling protein 1 (UCP1)-dependent mechanism to suppress the obesity.
CONCLUSION
These results demonstrated that LFBE decreased obesity partly by increasing the BAT mass and the energy expenditure by activating BAT thermogenesis and WAT browning in a UCP1-dependent mechanism.
3T3 Cells
;
Adipocytes
;
drug effects
;
physiology
;
Adipose Tissue, Brown
;
drug effects
;
physiology
;
Adipose Tissue, White
;
drug effects
;
physiology
;
Animal Feed
;
analysis
;
Animals
;
Anti-Obesity Agents
;
administration & dosage
;
metabolism
;
Cell Differentiation
;
drug effects
;
Diet
;
Fermentation
;
Hordeum
;
chemistry
;
Lactobacillus plantarum
;
chemistry
;
Male
;
Mice
;
Obesity
;
drug therapy
;
genetics
;
Plant Extracts
;
chemistry
;
Probiotics
;
administration & dosage
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Uncoupling Protein 1
;
genetics
;
metabolism
4.Di (2-ethylhexyl) phthalate Disorders Lipid Metabolism via TYK2/STAT1 and Autophagy in Rats.
Yue Zhu ZHANG ; Zhao Ming ZHANG ; Li Ting ZHOU ; Jian ZHU ; Xiao Han ZHANG ; Wen QI ; Shuang DING ; Qi XU ; Xu HAN ; Ya Ming ZHAO ; Xin Yue SONG ; Tian Yang ZHAO ; Lin YE
Biomedical and Environmental Sciences 2019;32(6):406-418
OBJECTIVE:
Previous studies have indicated that the plasticizer di (2-ethylhexyl) phthalate (DEHP) affects lipid accumulation; however, its underlying mechanism remains unclear. We aim to clarify the effect of DEHP on lipid metabolism and the role of TYK2/STAT1 and autophagy.
METHODS:
In total, 160 Wistar rats were exposed to DEHP [0, 5, 50, 500 mg/(kg•d)] for 8 weeks. Lipid levels, as well as mRNA and protein levels of TYK2, STAT1, PPARγ, AOX, FAS, LPL, and LC3 were detected.
RESULTS:
The results indicate that DEHP exposure may lead to increased weight gain and altered serum lipids. We observed that DEHP exposure affected liver parenchyma and increased the volume or number of fat cells. In adipose tissue, decreased TYK2 and STAT1 promoted the expression of PPARγ and FAS. The mRNA and protein expression of LC3 in 50 and 500 mg/(kg•d) groups was increased significantly. In the liver, TYK2 and STAT1 increased compensatorily; however, the expression of FAS and AOX increased, while LPL expression decreased. Joint exposure to both a high-fat diet and DEHP led to complete disorder of lipid metabolism.
CONCLUSION
It is suggested that DEHP induces lipid metabolism disorder by regulating TYK2/STAT1. Autophagy may play a potential role in this process as well. High-fat diet, in combination with DEHP exposure, may jointly have an effect on lipid metabolism disorder.
Adipose Tissue
;
drug effects
;
metabolism
;
Animals
;
Autophagy
;
drug effects
;
Body Weight
;
drug effects
;
Diet, High-Fat
;
adverse effects
;
Diethylhexyl Phthalate
;
toxicity
;
Endocrine Disruptors
;
toxicity
;
Female
;
Lipid Metabolism
;
drug effects
;
Lipid Metabolism Disorders
;
chemically induced
;
Liver
;
drug effects
;
metabolism
;
Male
;
Rats, Wistar
;
STAT1 Transcription Factor
;
metabolism
;
TYK2 Kinase
;
metabolism
5.Bofutsushosan ameliorates obesity in mice through modulating PGC-1α expression in brown adipose tissues and inhibiting inflammation in white adipose tissues.
Ying-Ying CHEN ; Yan YAN ; Zheng ZHAO ; Mei-Jing SHI ; Yu-Bin ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2016;14(6):449-456
The inducible co-activator PGC-1α plays a crucial role in adaptive thermogenesis and increases energy expenditure in brown adipose tissue (BAT). Meanwhile, chronic inflammation caused by infiltrated-macrophage in the white adipose tissue (WAT) is a target for the treatment of obesity. Bofutsushosan (BF), a traditional Chinese medicine composed of 17 crude drugs, has been widely used to treat obesity in China, Japan, and other Asia countries. However, the mechanism underlying anti-obesity remains to be elucidated. In the present study, we demonstrated that BF oral administration reduced the body weight of obese mice induced by high-fat diet (HFD) and alleviated the level of biochemical markers (P < 0.05), including blood glucose (Glu), total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL-C) and insulin. Our further results also indicated that oral BF administration increased the expression of PGC-1α and UCP1 in BAT. Moreover, BF also reduced the expression of inflammatory cytokines in WAT, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). These findings suggested that the mechanism of BF against obesity was at least partially through increasing gene expression of PGC-1α and UCP1 for energy consumption in BAT and inhibiting inflammation in WAT.
Adipose Tissue, Brown
;
drug effects
;
immunology
;
Adipose Tissue, White
;
drug effects
;
immunology
;
Animals
;
Cytokines
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
Energy Metabolism
;
drug effects
;
Female
;
Humans
;
Interleukin-6
;
genetics
;
immunology
;
Mice
;
Obesity
;
drug therapy
;
genetics
;
immunology
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
genetics
;
immunology
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
;
Uncoupling Protein 1
;
genetics
;
metabolism
6.TRPV1 channel-mediated thermogenesis is a common mode for the Chinese pungent-hot or pungent-warm herbs to demonstrate their natures.
Feng SUI ; Li DAI ; Qian LI ; Hai-yu ZHOU ; Hong-dan ZHAN ; Hai-ru HUO ; Ting-liang JIANG
Acta Pharmaceutica Sinica 2015;50(7):836-841
To further uncover the scientific significance and molecular mechanism of the Chinese herbs with pungent hot or warm natures, endogenous and exogenous expression systems were established by isolation of dorsal root ganglion (DRG) neurons and transfection of HEK293 cells with TRPV1 channel gene separately. On this basis, the regulation action of capsaicin, one main ingredient from chili pepper, on TRPV1 channel was further explored by using confocal microscope. Besides, the three-sites one-unit technique and method were constructed based on the brown adipose tissue (BAT), anal and tail skin temperatures. Then the effect of capsaicin on mouse energy metabolism was evaluated. Both endogenous and exogenous TRPV1 channel could be activated and this action could be specifically blocked by the TRPV1 channel inhibitor capsazepine. Simultaneously, the mice's core body temperature and BAT temperature fall down and then go up, accompanied by the increase of temperature of the mice's tail skin. Promotion of the energy metabolism by activation of TRPV1 channel might be the common way for the pungent-hot (warm) herbs to demonstrate their natures.
Adipose Tissue, Brown
;
drug effects
;
physiology
;
Animals
;
Capsaicin
;
analogs & derivatives
;
pharmacology
;
Energy Metabolism
;
Ganglia, Spinal
;
cytology
;
HEK293 Cells
;
Humans
;
Mice
;
Neurons
;
drug effects
;
physiology
;
Plants, Medicinal
;
chemistry
;
TRPV Cation Channels
;
physiology
;
Temperature
;
Thermogenesis
7.Medium-Chain Triglyceride Activated Brown Adipose Tissue and Induced Reduction of Fat Mass in C57BL/6J Mice Fed High-fat Diet.
Yong ZHANG ; Qing XU ; Ying Hua LIU ; Xin Sheng ZHANG ; Jin WANG ; Xiao Ming YU ; Rong Xin ZHANG ; Chao XUE ; Xue Yan YANG ; Chang Yong XUE
Biomedical and Environmental Sciences 2015;28(2):97-104
OBJECTIVETo investigate activation of brown adipose tissue (BAT) stimulated by medium-chain triglyceride (MCT).
METHODS30 Male C57BL/6J obese mice induced by fed high fat diet (HFD) were divided into 2 groups, and fed another HFD with 2% MCT or long-chain triglyceride (LCT) respectively for 12 weeks. Body weight, blood biochemical variables, interscapular brown fat tissue (IBAT) mass, expressions of mRNA and protein of beta 3-adrenergic receptors (β3-AR), uncoupling protein-1 (UCP1), hormone sensitive lipase (HSL), protein kinase A (PKA), and adipose triglyceride lipase (ATGL) in IBAT were measured.
RESULTSSignificant decrease in body weight and body fat mass was observed in MCT group as compared with LCT group (P<0.05) after 12 weeks. Greater increases in IBAT mass was observed in MCT group than in LCT group (P<0.05). Blood TG, TC, LDL-C in MCT group were decreased significantly, meanwhile blood HDL-C, ratio of HDL-C/LDL-C and norepinephrine were increased markedly. Expressions of mRNA and protein of β3-AR, UCP1, PKA, HSL, ATGL in BAT were greater in MCT group than in LCT group (P<0.05).
CONCLUSIONOur results suggest that MCT stimulated the activation of BAT, possible via norepinephrine pathway, which might partially contribute to reduction of the body fat mass in obese mice fed high fat diet.
Adipose Tissue, Brown ; drug effects ; Adiposity ; drug effects ; Animals ; Dietary Fats ; administration & dosage ; pharmacology ; Ion Channels ; genetics ; metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondrial Proteins ; genetics ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Triglycerides ; chemistry ; pharmacology ; Uncoupling Protein 1 ; Weight Loss
8.Short-term intensive atorvastatin therapy improves endothelial function partly via attenuating perivascular adipose tissue inflammation through 5-lipoxygenase pathway in hyperlipidemic rabbits.
Xiaoqiao WANG ; Yongqin LIN ; Niansang LUO ; Zhongqing CHEN ; Miaoning GU ; Jingfeng WANG ; Yangxin CHEN ;
Chinese Medical Journal 2014;127(16):2953-2959
BACKGROUNDAtherosclerosis is a kind of disease with multiple risk factors, of which hyperlipidemia is a major classical risk factor resulting in its pathogenesis and development. The aim of this study was to determine the effects of short-term intensive atorvastatin (IA) therapy on vascular endothelial function and explore the possible mechanisms that may help to explain the clinical benefits from short-term intensive statin therapy.
METHODSAfter exposure to high-fat diet (HFD) for 8 weeks, the animals were, respectively, treated with IA or low-dose atorvastatin (LA) for 5 days. Blood lipids, C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide (NO), endothelin-1 (ET-1), and endothelium-dependent vasorelaxation function were, respectively, measured. mRNA and protein expression of CRP, TNF-α, IL-6, macrophage chemoattractant protein-1 (MCP-1), and 5-lipoxygenase (5-LO) were also evaluated in pericarotid adipose tissue (PCAT) and cultured adipocytes.
RESULTSHFD increased serum inflammatory factor levels; induced significant hyperlipidemia and endothelial dysfunction, including imbalance between NO and ET-1; enhanced inflammatory factors and 5-LO expression; and promoted macrophage infiltration into adipose tissue. Five-day IA therapy could significantly decrease serum inflammatory factor levels and their expression in PCAT; restore the balance between NO and ET-1; and improve endothelial function and macrophage infiltration without significant changes in blood lipids. However, all of the above were not observed in LA therapy. In vitro experiment found that lipopolysaccharide (LPS) enhanced the expression of inflammatory factors and 5-LO in cultured adipocytes, which could be attenuated by short-time (6 hours) treatment of high-dose (5 µmol/L) but not low-dose (0.5 µmol/L) atorvastatin. In addition, inhibiting 5-LO by Cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC, a potent and direct 5-LO inhibitor) could significantly downregulate the above-mentioned gene expression in LPS-treated adipocytes.
CONCLUSIONShort-term IA therapy could significantly ameliorate endothelial dysfunction induced by HFD, which may be partly due to attenuating inflammation of PCAT through inhibiting 5-LO pathway.
Adipose Tissue ; drug effects ; immunology ; Animals ; Arachidonate 5-Lipoxygenase ; metabolism ; Atorvastatin Calcium ; Heptanoic Acids ; therapeutic use ; Hyperlipidemias ; drug therapy ; immunology ; Inflammation ; drug therapy ; immunology ; Lipid Metabolism ; drug effects ; Male ; Pyrroles ; therapeutic use ; Rabbits
9.Effects of Chinese Fructus Mume formula and its separated prescription extract on insulin resistance in type 2 diabetic rats.
Jing-bin LI ; Li-jun XU ; Hui DONG ; Zhao-yi HUANG ; Yan ZHAO ; Guang CHEN ; Fu-er LU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(6):877-885
The effect of Fructus Mume formula and its separated prescription extract on insulin resistance in type 2 diabetic rats was investigated. The rat model of type 2 diabetes was established by feeding on a high-fat diet for 8 weeks and by subsequently intravenous injection of small doses of streptozotocin. Rats in treatment groups, including the Fructus Mume formula treatment group (FM), the cold property herbs of Fructus Mume formula treatment group (CFM), the warm property herbs of Fructus Mume formula treatment group (WFM), were administrated with Fructus Mume formula and its separated prescription extract by gavage, while the rats in diabetic model group (DM) and metformin group (MET) were given by gavage with normal saline and metformin correspondingly. The body weight before and after treatment was measured, and the oral glucose tolerance test (OGTT) and the insulin release test (IRT) were performed. The homeostasis model assessment-insulin resistance index (HOMA-IR) was calculated. The protein and mRNA expression levels of Insr, β-arrestin-2, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues were detected by using Western blotting and RT-PCR respectively. The results demonstrated that, as compared with DM group, OGTT, IRT (0 h, 1 h) levels and HOMR-IR in treatment groups were all reduced, meanwhile their protein and mRNA expression levels of Insr, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues were obviously increased, and their protein and mRNA expression levels of β-arrestin-2 in the liver and skeletal muscle tissues were also markedly increased. It was suggested that the Fructus Mume formula and its separated prescription extracts could effectively improve insulin resistance in type 2 diabetic rats, which might be related to the up-regulated expression of Insr, Irs-1 and Glut-4 in the liver, skeletal muscle and fat tissues, and β-arrestin-2 in the liver and skeletal muscle tissues.
Adipose Tissue
;
drug effects
;
metabolism
;
Animals
;
Arrestins
;
genetics
;
metabolism
;
Diabetes Mellitus, Experimental
;
drug therapy
;
metabolism
;
Drugs, Chinese Herbal
;
pharmacology
;
therapeutic use
;
Glucose Intolerance
;
drug therapy
;
Glucose Transporter Type 4
;
genetics
;
metabolism
;
Hypoglycemic Agents
;
pharmacology
;
therapeutic use
;
Insulin Receptor Substrate Proteins
;
genetics
;
metabolism
;
Insulin Resistance
;
Liver
;
drug effects
;
metabolism
;
Male
;
Muscle, Skeletal
;
drug effects
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Wistar
;
Receptor, Insulin
;
genetics
;
metabolism
;
beta-Arrestin 2
;
beta-Arrestins
10.Stimulation of sphingosine-1-phosphate on cardiomyogenic differentiation of mesenchymal stem cells.
Lili JIANG ; Tianqing LIU ; Kedong SONG ; Shui GUAN ; Xiangqin LI ; Dan GE
Chinese Journal of Biotechnology 2013;29(11):1617-1628
To study the effect of sphingosine-1-phosphate (S1P) on the cardiomyogenic differentiation of human umbilical cord mesenchymal stem cells (UC-MSCs) and human adipose-derived mesenchymal stem cells (AD-MSCs), we seeded the cells in the culture plates and used cardiomyocyte culture medium (CMCM) combining with different concentration of S1P to induce UC-MSCs and AD-MSCs in vitro for 7, 14 and 28 days. Cardiomyogenic differentiations were identified through immunofluorescence staining, and the results were observed with fluorescence microscopy and confocal microscopy. The effects of S1P and CMCM on cell activity were evaluated by the methyl thiazolyl tetrazolium assay. The functional characteristic similar to cardiomyocytes was evaluated through detecting calcium transient. Our results showed that cardiomyogenic differentiation of UC-MSCs or AD-MSCs were enhanced with S1P concentration increasing, but cell activities declined. Results showed that the suitable differentiation time was 14 days, and the optimal concentration of S1P was 0.5 micromol/L. When working together with CMCM, S1P could promote the differentiation of UC-MSCs or AD-MSCs into functional cardiomyocytes, giving rise to specific electrophysiological properties (the calcium transient). Taken together, our results suggested that S1P could promote the differentiation of UC-MSCs or AD-MSCs into functional cardiomyocytes when being cultured in CMCM.
Adipose Tissue
;
cytology
;
metabolism
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Culture Media
;
Humans
;
Lysophospholipids
;
pharmacology
;
Mesenchymal Stromal Cells
;
cytology
;
drug effects
;
Myocytes, Cardiac
;
cytology
;
Sphingosine
;
analogs & derivatives
;
pharmacology
;
Umbilical Cord
;
cytology

Result Analysis
Print
Save
E-mail