1.Local overexpression of miR-429 sponge in subcutaneous white adipose tissue improves obesity and related metabolic disorders.
Liu YAO ; Wen-Jing XIU ; Chen-Ji YE ; Xin-Yu JIA ; Wen-Hui DONG ; Chun-Jiong WANG
Acta Physiologica Sinica 2025;77(3):441-448
Obesity is a worldwide health problem. An imbalance in energy metabolism is an important cause of obesity and related metabolic diseases. Our previous studies showed that inhibition of miR-429 increased the protein level of uncoupling protein 1 (UCP1) in beige adipocytes; however, whether local inhibition of miR-429 in subcutaneous adipose tissue affects diet-induced obesity and related metabolic disorders remains unclear. The aim of this study was to investigate the effect of local overexpression of miR-429 sponge in subcutaneous adipose tissue on obesity and related metabolic disorders. The control adeno-associated virus (AAV) or AAV expressing the miR-429 sponge was injected into mouse inguinal white adipose tissue. Seven days later, the mice were fed a high-fat diet for 10 weeks to induce obesity. The effects of the miR-429 sponge on body weight, adipose tissue weight, plasma glucose and lipid levels, and hepatic lipid content were explored. The results showed that the overexpression of miR-429 sponge in subcutaneous white adipose tissue reduced body weight and fat mass, decreased fasting blood glucose and plasma cholesterol levels, improved glucose tolerance, and alleviated hepatic lipid deposition in mice. Mechanistic investigation showed that the inhibition of miR-429 significantly upregulated the expression of UCP1 in adipocytes and adipose tissue. These results suggest that local inhibition of miR-429 in subcutaneous white adipose tissue ameliorates obesity and related metabolic disorders potentially by upregulating UCP1, and miR-429 is a potential therapeutic target for the treatment of obesity and related metabolic disorders.
Animals
;
MicroRNAs/physiology*
;
Obesity/metabolism*
;
Mice
;
Adipose Tissue, White/metabolism*
;
Metabolic Diseases
;
Subcutaneous Fat/metabolism*
;
Male
;
Uncoupling Protein 1/metabolism*
;
Diet, High-Fat
;
Mice, Inbred C57BL
2.Effect and mechanism of Zexie Decoction in promoting white adipose tissue browning/brown adipose tissue activation based on GLP-1R/cAMP/PKA/CREB pathway.
Jing DING ; Jie ZHAO ; Meng-Meng WANG ; Xuan SU ; Gai GAO ; Jiang-Yan XU ; Zhi-Shen XIE
China Journal of Chinese Materia Medica 2023;48(21):5851-5862
This study investigated the mechanism of Zexie Decoction(ZXD) in promoting white adipose tissue browning/brown adipose tissue activation based on the GLP-1R/cAMP/PKA/CREB pathway. A hyperlipidemia model was induced by a western diet(WD) in mice, and the mice were divided into a control group, a model group(WD), and low-, medium-, and high-dose ZXD groups. An adipogenesis model was induced in 3T3-L1 cells in vitro, and with forskolin(FSK) used as a positive control, low-, medium-, and high-dose ZXD groups were set up. Immunohistochemistry and immunofluorescence results showed that compared with the WD group, ZXD promoted the expression of UCP1 in white and brown adipose tissues, and also upregulated UCP1, CPT1β, PPARα, and other genes in the cells. Western blot analysis showed a dose-dependent increase in the protein expression of PGC-1α, UCP1, and PPARα with ZXD treatment, indicating that ZXD could promote the white adipose tissue browning/brown adipose tissue activation. Hematoxylin-eosin(HE) staining results showed that after ZXD treatment, white and brown adipocytes were significantly reduced in size, and the mRNA expression of ATGL, HSL, MGL, and PLIN1 was significantly upregulated as compared with the results in the WD group. Oil red O staining and biochemical assays indicated that ZXD improved lipid accumulation and promoted lipolysis. Immunohistochemistry and immunofluorescence staining for p-CREB revealed that ZXD reversed the decreased expression of p-CREB caused by WD. In vitro intervention with ZXD increased the protein expression of CREB, p-CREB, and p-PKA substrate, and increased the mRNA level of CREB. ELISA detected an increase in intracellular cAMP concentration with ZXD treatment. Molecular docking analysis showed that multiple active components in Alismatis Rhizoma and Atractylodis Macrocephalae Rhizoma could form stable hydrogen bond interactions with GLP-1R. In conclusion, ZXD promotes white adipose tissue browning/brown adipose tissue activation both in vivo and in vitro, and its mechanism of action may be related to the GLP-1R/cAMP/PKA/CREB pathway.
Mice
;
Animals
;
Adipose Tissue, Brown
;
Molecular Docking Simulation
;
PPAR alpha/metabolism*
;
Adipose Tissue, White
;
RNA, Messenger/metabolism*
3.Mulberry leaf flavonoids activate BAT and induce browning of WAT to improve type 2 diabetes via regulating the AMPK/SIRT1/PGC-1α signaling pathway.
Long CHENG ; Lu SHI ; Changhao HE ; Chen WANG ; Yinglan LV ; Huimin LI ; Yongcheng AN ; Yuhui DUAN ; Hongyu DAI ; Huilin ZHANG ; Yan HUANG ; Wanxin FU ; Weiguang SUN ; Baosheng ZHAO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(11):812-829
Mulberry (Morus alba L.) leaf is a well-established traditional Chinese botanical and culinary resource. It has found widespread application in the management of diabetes. The bioactive constituents of mulberry leaf, specifically mulberry leaf flavonoids (MLFs), exhibit pronounced potential in the amelioration of type 2 diabetes (T2D). This potential is attributed to their ability to safeguard pancreatic β cells, enhance insulin resistance, and inhibit α-glucosidase activity. Our antecedent research findings underscore the substantial therapeutic efficacy of MLFs in treating T2D. However, the precise mechanistic underpinnings of MLF's anti-T2D effects remain the subject of inquiry. Activation of brown/beige adipocytes is a novel and promising strategy for T2D treatment. In the present study, our primary objective was to elucidate the impact of MLFs on adipose tissue browning in db/db mice and 3T3-L1 cells and elucidate its underlying mechanism. The results manifested that MLFs reduced body weight and food intake, alleviated hepatic steatosis, improved insulin sensitivity, and increased lipolysis and thermogenesis in db/db mice. Moreover, MLFs activated brown adipose tissue (BAT) and induced the browning of inguinal white adipose tissue (IWAT) and 3T3-L1 adipocytes by increasing the expressions of brown adipocyte marker genes and proteins such as uncoupling protein 1 (UCP1) and beige adipocyte marker genes such as transmembrane protein 26 (Tmem26), thereby promoting mitochondrial biogenesis. Mechanistically, MLFs facilitated the activation of BAT and the induction of WAT browning to ameliorate T2D primarily through the activation of AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) signaling pathway. These findings highlight the unique capacity of MLF to counteract T2D by enhancing BAT activation and inducing browning of IWAT, thereby ameliorating glucose and lipid metabolism disorders. As such, MLFs emerge as a prospective and innovative browning agent for the treatment of T2D.
Mice
;
Animals
;
Adipose Tissue, Brown
;
Sirtuin 1/pharmacology*
;
Diabetes Mellitus, Type 2/metabolism*
;
AMP-Activated Protein Kinases/metabolism*
;
Morus/metabolism*
;
Flavonoids/metabolism*
;
Prospective Studies
;
Signal Transduction
;
Adipose Tissue, White
;
Plant Leaves
;
Uncoupling Protein 1/metabolism*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism*
4.Supplementation of Fermented Barley Extracts with Lactobacillus Plantarum dy-1 Inhibits Obesity via a UCP1-dependent Mechanism.
Xiang XIAO ; Juan BAI ; Ming Song LI ; Jia Yan ZHANG ; Xin Juan SUN ; Ying DONG
Biomedical and Environmental Sciences 2019;32(8):578-591
OBJECTIVE:
We aimed to explore how fermented barley extracts with Lactobacillus plantarum dy-1 (LFBE) affected the browning in adipocytes and obese rats.
METHODS:
In vitro, 3T3-L1 cells were induced by LFBE, raw barley extraction (RBE) and polyphenol compounds (PC) from LFBE to evaluate the adipocyte differentiation. In vivo, obese SD rats induced by high fat diet (HFD) were randomly divided into three groups treated with oral gavage: (a) normal control diet with distilled water, (b) HFD with distilled water, (c) HFD with 800 mg LFBE/kg body weight (bw).
RESULTS:
In vitro, LFBE and the PC in the extraction significantly inhibited adipogenesis and potentiated browning of 3T3-L1 preadipocytes, rather than RBE. In vivo, we observed remarkable decreases in the body weight, serum lipid levels, white adipose tissue (WAT) weights and cell sizes of brown adipose tissues (BAT) in the LFBE group after 10 weeks. LFBE group could gain more mass of interscapular BAT (IBAT) and promote the dehydrogenase activity in the mitochondria. And LFBE may potentiate process of the IBAT thermogenesis and epididymis adipose tissue (EAT) browning via activating the uncoupling protein 1 (UCP1)-dependent mechanism to suppress the obesity.
CONCLUSION
These results demonstrated that LFBE decreased obesity partly by increasing the BAT mass and the energy expenditure by activating BAT thermogenesis and WAT browning in a UCP1-dependent mechanism.
3T3 Cells
;
Adipocytes
;
drug effects
;
physiology
;
Adipose Tissue, Brown
;
drug effects
;
physiology
;
Adipose Tissue, White
;
drug effects
;
physiology
;
Animal Feed
;
analysis
;
Animals
;
Anti-Obesity Agents
;
administration & dosage
;
metabolism
;
Cell Differentiation
;
drug effects
;
Diet
;
Fermentation
;
Hordeum
;
chemistry
;
Lactobacillus plantarum
;
chemistry
;
Male
;
Mice
;
Obesity
;
drug therapy
;
genetics
;
Plant Extracts
;
chemistry
;
Probiotics
;
administration & dosage
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Uncoupling Protein 1
;
genetics
;
metabolism
5.Mitochondrial Dysfunction in Adipocytes as a Primary Cause of Adipose Tissue Inflammation
Chang Yun WOO ; Jung Eun JANG ; Seung Eun LEE ; Eun Hee KOH ; Ki Up LEE
Diabetes & Metabolism Journal 2019;43(3):247-256
Adipose tissue inflammation is considered a major contributing factor in the development of obesity-associated insulin resistance and cardiovascular diseases. However, the cause of adipose tissue inflammation is presently unclear. The role of mitochondria in white adipocytes has long been neglected because of their low abundance. However, recent evidence suggests that mitochondria are essential for maintaining metabolic homeostasis in white adipocytes. In a series of recent studies, we found that mitochondrial function in white adipocytes is essential to the synthesis of adiponectin, which is the most abundant adipokine synthesized from adipocytes, with many favorable effects on metabolism, including improvement of insulin sensitivity and reduction of atherosclerotic processes and systemic inflammation. From these results, we propose a new hypothesis that mitochondrial dysfunction in adipocytes is a primary cause of adipose tissue inflammation and compared this hypothesis with a prevailing concept that “adipose tissue hypoxia” may underlie adipose tissue dysfunction in obesity. Recent studies have emphasized the role of the mitochondrial quality control mechanism in maintaining mitochondrial function. Future studies are warranted to test whether an inadequate mitochondrial quality control mechanism is responsible for mitochondrial dysfunction in adipocytes and adipose tissue inflammation.
11-beta-Hydroxysteroid Dehydrogenases
;
Adipocytes
;
Adipocytes, White
;
Adipokines
;
Adiponectin
;
Adipose Tissue
;
Anoxia
;
Cardiovascular Diseases
;
Homeostasis
;
Inflammation
;
Insulin Resistance
;
Metabolism
;
Mitochondria
;
Nitric Oxide
;
Obesity
;
Quality Control
6.Two Faces of White Adipose Tissue with Heterogeneous Adipogenic Progenitors
Diabetes & Metabolism Journal 2019;43(6):752-762
Chronic energy surplus increases body fat, leading to obesity. Since obesity is closely associated with most metabolic complications, pathophysiological roles of adipose tissue in obesity have been intensively studied. White adipose tissue is largely divided into subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT). These two white adipose tissues are similar in their appearance and lipid storage functions. Nonetheless, emerging evidence has suggested that SAT and VAT have different characteristics and functional roles in metabolic regulation. It is likely that there are intrinsic differences between VAT and SAT. In diet-induced obese animal models, it has been reported that adipogenic progenitors in VAT rapidly proliferate and differentiate into adipocytes. In obesity, VAT exhibits elevated inflammatory responses, which are less prevalent in SAT. On the other hand, SAT has metabolically beneficial effects. In this review, we introduce recent studies that focus on cellular and molecular components modulating adipogenesis and immune responses in SAT and VAT. Given that these two fat depots show different functions and characteristics depending on the nutritional status, it is feasible to postulate that SAT and VAT have different developmental origins with distinct adipogenic progenitors, which would be a key determining factor for the response and accommodation to metabolic input for energy homeostasis.
Adipocytes
;
Adipogenesis
;
Adipose Tissue
;
Adipose Tissue, White
;
Energy Metabolism
;
Hand
;
Homeostasis
;
Inflammation
;
Intra-Abdominal Fat
;
Models, Animal
;
Nutritional Status
;
Obesity
;
Stem Cells
;
Subcutaneous Fat
7.The dark side of browning.
Kirstin A TAMUCCI ; Maria NAMWANJE ; Lihong FAN ; Li QIANG
Protein & Cell 2018;9(2):152-163
The induction of brown-like adipocyte development in white adipose tissue (WAT) confers numerous metabolic benefits by decreasing adiposity and increasing energy expenditure. Therefore, WAT browning has gained considerable attention for its potential to reverse obesity and its associated co-morbidities. However, this perspective has been tainted by recent studies identifying the detrimental effects of inducing WAT browning. This review aims to highlight the adverse outcomes of both overactive and underactive browning activity, the harmful side effects of browning agents, as well as the molecular brake-switch system that has been proposed to regulate this process. Developing novel strategies that both sustain the metabolic improvements of WAT browning and attenuate the related adverse side effects is therefore essential for unlocking the therapeutic potential of browning agents in the treatment of metabolic diseases.
Adipocytes, Beige
;
cytology
;
Adipose Tissue, Brown
;
cytology
;
metabolism
;
Adipose Tissue, White
;
cytology
;
Aging
;
metabolism
;
Animals
;
Humans
8.Differential Tissue-specific and Pathway-specific Anti-obesity Effects of Green Tea and Taeumjowitang, a Traditional Korean Medicine, in Mice.
Junil KIM ; Sujin PARK ; Haein AN ; Ji Young CHOI ; Myung Sook CHOI ; Sang Woon CHOI ; Seong Jin KIM
Journal of Cancer Prevention 2017;22(3):147-158
BACKGROUND: Traditional medicines have been leveraged for the treatment and prevention of obesity, one of the fastest growing diseases in the world. However, the exact mechanisms underlying the effects of traditional medicine on obesity are not yet fully understood. METHODS: We produced the transcriptomes of epididymal white adipose tissue (eWAT), liver, muscle, and hypothalamus harvested from mice fed a normal diet, high-fat-diet alone, high-fat-diet together with green tea, or a high-fat-diet together with Taeumjowitang, a traditional Korean medicine. RESULTS: We found tissue-specific gene expression patterns as follows: (i) the eWAT transcriptome was more significantly altered by Taeumjowitang than by green tea, (ii) the liver transcriptome was similarly altered by Taeumjowitang and green tea, and (iii) both the muscle and hypothalamus transcriptomes were more significantly altered by green tea than Taeumjowitang. We then applied integrated network analyses, which revealed that functional networks associated with lymphocyte activation were more effectively regulated by Taeumjowitang than by green tea in the eWAT. In contrast, green tea was a more effective regulator of functional networks associated with glucose metabolic processes in the eWAT. CONCLUSIONS: Taeumjowitang and green tea have a differential tissue-specific and pathway-specific therapeutic effect on obesity.
Adipose Tissue, White
;
Animals
;
Diet
;
Gene Expression
;
Gene Regulatory Networks
;
Glucose
;
Hypothalamus
;
Liver
;
Lymphocyte Activation
;
Medicine, Traditional
;
Metabolism
;
Mice*
;
Obesity
;
Sequence Analysis, RNA
;
Tea*
;
Transcriptome
9.HOXC10 suppresses browning of white adipose tissues.
Yvonne NG ; Shi Xiong TAN ; Sook Yoong CHIA ; Hwee Yim Angeline TAN ; Sin Yee GUN ; Lei SUN ; Wanjin HONG ; Weiping HAN
Experimental & Molecular Medicine 2017;49(2):e292-
Given that increased thermogenesis in white adipose tissue, also known as browning, promotes energy expenditure, significant efforts have been invested to determine the molecular factors involved in this process. Here we show that HOXC10, a homeobox domain-containing transcription factor expressed in subcutaneous white adipose tissue, is a suppressor of genes involved in browning white adipose tissue. Ectopic expression of HOXC10 in adipocytes suppresses brown fat genes, whereas the depletion of HOXC10 in adipocytes and myoblasts increases the expression of brown fat genes. The protein level of HOXC10 inversely correlates with brown fat genes in subcutaneous white adipose tissue of cold-exposed mice. Expression of HOXC10 in mice suppresses cold-induced browning in subcutaneous white adipose tissue and abolishes the beneficial effect of cold exposure on glucose clearance. HOXC10 exerts its effect, at least in part, by suppressing PRDM16 expression. The results support that HOXC10 is a key negative regulator of the process of browning in white adipose tissue.
Adipocytes
;
Adipose Tissue, Brown
;
Adipose Tissue, White
;
Animals
;
Ectopic Gene Expression
;
Energy Metabolism
;
Genes, Homeobox
;
Glucose
;
Mice
;
Myoblasts
;
Thermogenesis
;
Transcription Factors
10.Bile Acid Receptor Farnesoid X Receptor: A Novel Therapeutic Target for Metabolic Diseases.
Journal of Lipid and Atherosclerosis 2017;6(1):1-7
Bile acid has been well known to serve as a hormone in regulating transcriptional activity of Farnesoid X receptor (FXR), an endogenous bile acid nuclear receptor. Moreover, bile acid regulates diverse biological processes, including cholesterol/bile acid metabolism, glucose/lipid metabolism and energy expenditure. Alteration of bile acid metabolism has been revealed in type II diabetic (T2D) patients. FXR-mediated bile acid signaling has been reported to play key roles in improving metabolic parameters in vertical sleeve gastrectomy surgery, implying that FXR is an essential modulator in the metabolic homeostasis. Using a genetic mouse model, intestinal specific FXR-null mice have been reported to be resistant to diet-induced obesity and insulin resistance. Moreover, intestinal specific FXR agonism using gut-specific FXR synthetic agonist has been shown to enhance thermogenesis in brown adipose tissue and browning in white adipose tissue to increase energy expenditure, leading to reduced body weight gain and improved insulin resistance. Altogether, FXR is a potent therapeutic target for the treatment of metabolic diseases.
Adipose Tissue, Brown
;
Adipose Tissue, White
;
Animals
;
Bile Acids and Salts
;
Bile*
;
Biological Processes
;
Body Weight
;
Energy Metabolism
;
Felodipine
;
Gastrectomy
;
Homeostasis
;
Humans
;
Insulin Resistance
;
Metabolic Diseases*
;
Metabolism
;
Mice
;
Obesity
;
Thermogenesis

Result Analysis
Print
Save
E-mail