1.Study on the effects of telomerase reverse transcriptase in alleviating doxorubicin induced cardiotoxicity.
Qingqing GU ; Qianwe CHEN ; Yu WANG ; Dabei CAI ; Tingting XIAO ; Qingjie WANG ; Ling SUN
Chinese Critical Care Medicine 2025;37(6):583-589
OBJECTIVE:
To investigate the role of telomerase reverse transcriptase (TERT) in alleviating doxorubicin (DOX)-induced cardiotoxicity.
METHODS:
(1) Cell experiments: rat H9c2 cardiomyocytes were divided into control group (CON group), null adenovirus transfection group (NC group), TERT overexpression adenovirus transfection group (TERT group), DOX group (treated with 1 μmol/L DOX for 12 hours), DOX+NC group, and DOX+TERT group (null adenovirus or TERT overexpression adenovirus were transfected for 24 hours and then treated with 1 μmol/L DOX for 12 hours). The mRNA expression of TERT in cardiomyocytes was detected by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR). The level of mitochondrial membrane potential was detected by immunofluorescence. The expression levels of intracellular Bax, Bcl-2, microtubule-associated protein 1 light chain 3 (LC3) and p62 were detected by Western blotting. (2) Animal experiments: male C57BL/6 mice were randomly divided into a sham operation group (Sham group), DOX group (acute cardiotoxicity model was constructed by intraperitoneal injection of DOX 15 mg/kg), DOX+NC group and DOX+TERT group (modeled after transfection with airborne adenovirus or TERT overexpression adenovirus for 7 days). After 7 days of modeling, the area of myocardial fibrosis was detected by Sirius scarlet staining, and cardiac function was detected by echocardiography.
RESULTS:
(1) Cellular experiments: the mRNA expression level of TERT was significantly higher in the TERT group compared with the CON and NC groups. Compared with the CON group, the TERT mRNA expression level of cardiomyocytes in the DOX group and the DOX+NC group were significantly lower, the level of mitochondrial membrane potential was significantly lower, the protein expressions of Bax and LC3 were significantly increased, and the protein expressions of Bcl-2 and p62 were significantly decreased. No significant differences were found between the DOX group and DOX+NC group. Compared with the DOX group and DOX+NC group, the TERT mRNA expression level was increased in the DOX+TERT group (relative expression: 1.02±0.10 vs. 0.61±0.05, 0.54±0.03, both P < 0.05), the level of mitochondrial membrane potential was significantly increased (1.14±0.05 vs. 0.96±0.01, 0.96±0.01, both P < 0.05), the protein expressions of Bax and LC3 were significantly decreased, and the protein expressions of Bcl-2 and p62 were significantly increased (Bax/β-actin: 0.88±0.01 vs. 1.31±0.02, 1.26±0.01; LC3-II/I: 2.16±0.05 vs. 2.64±0.06, 2.58±0.02; Bcl-2/β-actin: 0.65±0.01 vs. 0.40±0.01, 0.41±0.01; p62/β-actin: 0.45±0.01 vs. 0.23±0.02, 0.29±0.01; all P < 0.05). (2) Animal experiments: compared with the Sham group, the percentage of myocardial fibrosis area was significantly increased and left ventricular ejection fraction (LVEF) and fractional shortening (FS) were significantly decreased in the DOX group and DOX+NC group. Compared with the DOX group and DOX+NC group, the percentage of myocardial fibrotic area was significantly decreased in the DOX+TERT group (%: 2.33±0.06 vs. 3.76±0.07, 3.87±0.06, both P < 0.05), and the LVEF and FS were significantly increased [LVEF (%): 67.00±1.14 vs. 54.60±1.57, 53.40±2.18; FS (%): 38.60±0.51 vs. 30.60±1.10, 30.00±0.71; all P < 0.05].
CONCLUSION
Up-regulation of TERT expression can inhibit DOX-induced cardiomyocyte autophagy and apoptosis, attenuate DOX-induced myocardial fibrosis in mice, improve cardiac function, and thus alleviate DOX-induced cardiotoxicity.
Animals
;
Doxorubicin/toxicity*
;
Telomerase/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Rats
;
Male
;
Cardiotoxicity
;
Mice, Inbred C57BL
;
Mice
;
Membrane Potential, Mitochondrial
;
Adenoviridae
;
bcl-2-Associated X Protein/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Transfection
;
Apoptosis
2.Effect of overexpression of aldehyde dehydrogenase family member A2 on hypertrophic growth and proliferation of cardiomyocytes.
Hang LIU ; Qiqi LIU ; Zhenhua LI ; Xiao YANG ; Jian WANG
Chinese Journal of Biotechnology 2024;40(12):4660-4669
Retinoic acid signaling pathway plays a role in regulating vertebrate development, cell differentiation, and homeostasis. As a key enzyme that catalyzes the oxidation of retinal to retinoic acid, aldehyde dehydrogenase 1 family member A2 (Aldh1a2) is involved in cardiac development, while whether it functions in heart diseases remains to be studied. In this study, we infected primary cardiomyocytes with adenovirus overexpressing Aldh1a2 (Ad-Aldh1a2) to explore the effects of Aldh1a2 overexpression on the biological function of cardiomyocytes. The results showed that the infection with Ad-Aldh1a2 realized the overexpression of Aldh1a2 in cardiomyocytes. Compared with the control group infected with Ad-GFP, the cardiomyocytes infected with Ad-Aldh1a2 showcased significantly increased size and up-regulated expression levels of the atrial natriuretic factor gene (ANF), brain natriuretic peptide gene (BNP), and β-myosin heavy chain (β-MHC). In addition, 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay demonstrated that Aldh1a2 overexpression increased the proportion of cardiomyocytes with positive EdU signals and upregulated the expression levels of proliferation-related genes cyclin D2 (Ccnd2) and budding uninhibited by benzimidazole 1 (Bub1). The above data indicated that overexpression of Aldh1a2 induced hypertrophic growth and proliferation of cardiomyocytes. This study provides a basis for further understanding the function of Aldh1a2 in heart diseases and developing therapies for heart diseases.
Myocytes, Cardiac/cytology*
;
Animals
;
Cell Proliferation
;
Aldehyde Dehydrogenase 1 Family/metabolism*
;
Rats
;
Retinal Dehydrogenase/metabolism*
;
Adenoviridae/metabolism*
;
Cells, Cultured
;
Rats, Sprague-Dawley
;
Cardiomegaly/metabolism*
;
Up-Regulation
;
Aldehyde Dehydrogenase, Mitochondrial
3.Construction of recombinant adenovirus expressing EGFRvIII extracellular domain gene and preparation of single domain antibody.
Huimin ZHANG ; Jiaqi XU ; Yi CHENG ; Shan FU ; Yanlong LIU ; Yujing HU ; Yanan DU ; Fuxiang BAO
Chinese Journal of Biotechnology 2022;38(9):3551-3562
The aim of this study was to construct a recombinant adenovirus expressing extracellular domain gene of human epidermal growth factor receptor variant Ⅲ (EGFRvIII ECD), and to prepare single domain antibody targeting EGFRvIII ECD by immunizing camels and constructing phage display antibody library. Total RNA was extracted from human prostate cancer cell line PC-3 cells and reversely transcribed into cDNA. EGFRvIII ECD gene was amplified using cDNA as template, and ligated into pAdTrack-CMV plasmid vector and transformed into E. coli BJ5183 competent cells containing pAdEasy-1 plasmid for homologous recombination. The recombinant adenovirus expressing EGFRvIII ECD was obtained through transfecting the plasmid into HEK293A cells. The recombinant adenovirus was used to immunize Bactrian camel to construct EGFRvIII ECD specific single domain antibody library. The single domain antibody was obtained by screening the library with EGFRvIII protein and the antibody was expressed, purified and identified. The results showed that recombinant adenovirus expressing EGFRvIII ECD was obtained. The capacity of EGFRvIII specific phage single domain antibody library was 1.4×109. After three rounds of enrichment and screening, thirty-one positive clones binding to EGFRvIII ECD were obtained by phage-ELISA, and the recombinant single domain antibody E14 with highest OD450 value was expressed and purified. The recombinant E14 antibody can react with EGFRvIII ECD with high affinity in ELISA assessment. The results indicated that the EGFRvIII specific single domain antibody library with high capacity and diversity was constructed and the single domain antibody with binding activity to EGFRvIII was obtained by screening the library. This study may facilitate the diagnosis and treatment of EGFRvIII targeted malignant tumors in the future.
Adenoviridae/genetics*
;
DNA, Complementary
;
ErbB Receptors
;
Escherichia coli/genetics*
;
Genetic Vectors/genetics*
;
Humans
;
RNA
;
Recombinant Proteins/metabolism*
;
Single-Domain Antibodies
4.Effects of adenovirus-mediated shRNA down-regulates PTEN expression on fibril-binding proteins vinculin, filamin A and cortactin in activated hepatic stellate cells.
Li Sen HAO ; Jie SONG ; Ming Ting ZHANG ; Xiao Jie SONG ; Mei Yu JIANG ; Jing Xiu JI ; Yan Bo MO ; Jing WANG
Chinese Journal of Hepatology 2022;30(1):38-44
Objective: To investigate the effect of adenovirus-mediated shRNA down-regulating phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression on vinculin, filamin A, and cortactin in activated hepatic stellate cells (HSCs). Methods: Activated rats hepatic stellate cell line (HSC-T6) was cultured in vitro. Recombinant adenovirus Ad-shRNA/PTEN carrying PTEN targeted RNA interference sequence [short hairpin RNA (shRNA)] and empty control virus Ad-GFP were transfected into HSCs. The PTEN mRNA and protein expression of HSCs in each group were detected by real-time fluorescence quantitative PCR and Western blot. The expressional change of vinculin, filamin A and cortactin in HSCs of each group were detected by confocal laser scanning immunofluorescence microscope. Image-pro plus 6.0 software was used for image analysis and processing. The integrated optical density (IOD) of the fluorescence protein expression was measured. The experiment was divided into three groups: control group (DMEM instead of adenovirus solution in the adenovirus transfection step), Ad-GFP group (transfected with empty virus Ad-GFP only expressing green fluorescent protein), and Ad-shRNA/PTEN group (recombinant adenovirus Ad-shRNA/PTEN carrying shRNA targeting PTEN and expressing green fluorescent protein). One-way analysis of variance was used for comparison of mean value among the three groups, and LSD-test was used for comparison between the groups. Results: shRNA targeted PTEN was successfully transfected and the expression of PTEN mRNA and protein in HSC (P < 0.05) was significantly down-regulated. HSCs vinculin was mainly expressed in the cytoplasm. HSCs vinculin fluorescence IOD in the Ad-shRNA/PTEN group (19 758.83 ± 1 520.60) was higher than control (7 737.16 ± 279.93) and Ad-GFP group (7 725.50 ± 373.03) (P < 0.05), but there was no statistically significant difference between control group and Ad-GFP group (P > 0.05). There was no statistically significant difference in the fluorescence IOD of Filamin A among the three groups (P > 0.05), but the subcellular distribution of Filamin A among the three groups were changed. Filamin A in the Ad-shrNA /PTEN HSC group was mainly distributed in the cytoplasm. Filamin A HSC was mainly located in the nucleus.The filamin A HSC in the control group and Ad-GFP group was mainly located in the nucleus. The nucleocytoplasmic ratio of Filamin A in the AD-shrNA /PTEN group (0.60 ± 0.15) was significantly lower than control group (1.20 ± 0.15) and Ad-GFP group (1.08 ± 0.23), P < 0.05. but there was no statistically significant difference in filamin A nucleocytoplasmic ratio of HSC between the control group and the Ad-GFP group (P > 0.05). Cortactin HSCs in the three groups was mainly distributed in the cytoplasm. The cortactin fluorescence IOD of HSCs in the Ad-shRNA/PTEN group was significantly higher than control group (22 959.94 ± 1 710.42) and the Ad-GFP group (22 547.11 ± 1 588.72 ) (P < 0.05), while there was no statistically significant difference in the IOD of cortactin fluorescence in HSCs between the control group and the Ad-GFP group (P > 0.05). Conclusion: The down-regulation of PTEN expression raises the expression of microfilament-binding protein vinculin and cortactin, and changes the subcellular distribution of another microfilament binding protein filamin A, that is, translocation from nucleus to the cytoplasm in activated HSC in vitro.
Adenoviridae/metabolism*
;
Animals
;
Carrier Proteins
;
Cell Proliferation
;
Cortactin
;
Filamins/genetics*
;
Hepatic Stellate Cells/metabolism*
;
PTEN Phosphohydrolase/metabolism*
;
RNA, Small Interfering/genetics*
;
Rats
;
Vinculin/genetics*
5.Construction of an adenovirus vector expressing engineered splicing factor for regulating alternative splicing of YAP1 in neonatal rat cardiomyocytes.
Yang LI ; Qian ZHAO ; Xiao Wei SONG ; Jin Chao SONG
Journal of Southern Medical University 2022;42(7):1013-1018
OBJECTIVE:
To construct an adenovirus vector expressing artificial splicing factor capable of regulating alternative splicing of Yap1 in cardiomyocytes.
METHODS:
The splicing factors with different sequences were constructed against Exon6 of YAP1 based on the sequence specificity of Pumilio1. The PCR fragment of the artificially synthesized PUF-SR or wild-type PUFSR was cloned into pAd-Track plasmid, and the recombinant plasmids were transformed into E. coli DH5α for plasmid amplification. The amplified plasmids were digested with Pac I and transfected into 293A cells for packaging to obtain the adenovirus vectors. Cultured neonatal rat cardiomyocytes were transfected with the adenoviral vectors, and alternative splicing of YAP1 was detected using quantitative and semi-quantitative PCR; Western blotting was performed to detect the signal of the fusion protein Flag.
RESULTS:
The transfection efficiency of the adenovirus vectors was close to 100% in rat cardiomyocytes, and no fluorescent protein was detected in the cells with plasmid transfection. The results of Western blotting showed that both the negative control and Flag-SR-NLS-PUF targeting the YAPExon6XULIE sequence were capable of detecting the expression of the protein fused to Flag. The results of reverse transcription-PCR and PCR demonstrated that the artificial splicing factor constructed based on the 4th target sequence of YAP1 effectively regulated the splicing of YAP1 Exon6 in the cardiomyocytes (P < 0.05).
CONCLUSION
We successfully constructed adenovirus vectors capable of regulating YAP1 alternative splicing rat cardiomyocytes.
Adenoviridae/metabolism*
;
Alternative Splicing
;
Animals
;
Animals, Newborn
;
Escherichia coli/metabolism*
;
Genetic Vectors
;
Myocytes, Cardiac/metabolism*
;
Plasmids
;
RNA Splicing Factors/metabolism*
;
Rats
;
Transfection
6.Preparation and characterization of Ad-ERα-36-Fc-GFP.
Yuqiong XIE ; Chunchun LI ; Xiaoye LI ; Lihong CHEN ; Maoxiao YAN ; Jiang CAO
Chinese Journal of Biotechnology 2022;38(3):1086-1095
ERα-36 is a novel subtype of estrogen receptor α which promotes tumor cell proliferation, invasion and drug resistance, and it serves as a therapeutic target. However, only small-molecule compounds targeting ERα-36 are under development as anticancer drugs at present. Gene therapy approach targeting ERα-36 can be explored using recombinant adenovirus armed with decoy receptor. The recombinant shuttle plasmid pDC316-Ig κ-ERα-36-Fc-GFP was constructed via genetic engineering to express an Ig κ-signaling peptide-leading secretory recombinant fusion protein ERα-36-Fc. The recombinant adenovirus Ad-ERα-36-Fc-GFP was subsequently packaged, characterized and amplified using AdMaxTM adenovirus packaging system. The expression of fusion protein and functional outcome of Ad-ERα-36-Fc-GFP transduction were further analyzed with triple-negative breast cancer MDA-MB-231 cells. Results showed that the recombinant adenovirus Ad-ERα-36-Fc-GFP was successfully generated. The virus effectively infected MDA-MB-231 cells which resulted in expression and secretion of the recombinant fusion protein ERα-36-Fc, leading to significant inhibition of EGFR/ERK signaling pathway. Preparation of the recombinant adenovirus Ad-ERα-36-Fc-GFP provides a basis for further investigation on cancer gene therapy targeting ERα-36.
Adenoviridae/genetics*
;
Cell Proliferation
;
Estrogen Receptor alpha/metabolism*
;
Recombinant Proteins
;
Transfection
7.Construction of recombinant adenovirus expressing capsid protein of serotype O foot-and-mouth disease virus and analysis of its immunogenicity.
Cancan WANG ; Liping ZHANG ; Xinsheng LIU ; Peng ZHOU ; Li PAN ; Yonglu WANG
Chinese Journal of Biotechnology 2022;38(5):1824-1836
In order to construct a recombinant replication deficient human type 5 adenovirus (Ad5) expressing a foot-and-mouth disease virus (FMDV) capsid protein, specific primers for P12A and 3B3C genes of FMDV-OZK93 were synthesized. The P12A and 3B3C genes were then amplified and connected by fusion PCR, and a recombinant shuttle plasmid pDC316-mCMV-EGFP-P12A3B3C expressing the FMDV-OZK93 capsid protein precursor P12A and 3B3C protease were obtained by inserting the P12A3B3C gene into the pDC316-mCMV-EGFP plasmid. The recombinant adenovirus rAdv-P12A3B3C-OZK93 was subsequently packaged, characterized and amplified using AdMaxTM adenovirus packaging system, and the expression was verified by infecting human embryonic kidney cell HEK-293. The humoral and cellular immunity levels of well-expressed and purified recombinant adenovirus immunized mice were evaluated. The results showed that rAdv-P12A3B3C-OZK93 could be stably passaged and the maximum virus titer reached 1×109.1 TCID50/mL. Western blotting and indirect immunofluorescence showed that rAdv-P12A3B3C-OZK93 expressed the FMDV-specific proteins P12A and VP1 in HEK-293 cells. In addition, the PK cell infection experiment confirmed that rAdv-P12A3B3C-OZK93 could infect porcine cells, which is essential for vaccination in pigs. Comparing with the inactivated vaccine group, the recombinant adenovirus could induce higher FMDV-specific IgG antibodies, γ-IFN and IL-10. This indicates that the recombinant adenovirus has good immunity for animal, which is very important for the subsequent development of foot-and-mouth disease vaccine.
Adenoviridae/genetics*
;
Adenoviruses, Human/genetics*
;
Animals
;
Antibodies, Viral
;
Capsid/metabolism*
;
Capsid Proteins
;
Foot-and-Mouth Disease/prevention & control*
;
Foot-and-Mouth Disease Virus/genetics*
;
HEK293 Cells
;
Humans
;
Mice
;
Recombinant Proteins/genetics*
;
Serogroup
;
Swine
;
Viral Proteins
;
Viral Vaccines/genetics*
8.Effect of recombinant adenovirus Ad-mir-22 on glucose uptake in HepG2 cells.
Lihong LIAO ; Wenbin YUAN ; Yong CHEN ; Jichao LIANG
Chinese Journal of Biotechnology 2020;36(4):763-771
The recombinant adenoviruses expressing miR-22 (Ad-miR-22) was constructed and the effect of Ad-miR-22 on insulin signal pathway and glucose uptake in HepG2 cells was analyzed. MiR-22 gene was amplified by PCR from human hepatocytes and cloned into the pAdTrack-CMV vector to generate the shuttle plasmid pAdT-22. The positive colonies were confirmed by PCR and sequencing. The resultant shuttle plasmid was linearized with Pme I, followed by co-transformation into competent BJ5183 cells containing an adenoviral backbone plasmid (pAdEasy-1) to create the recombinant plasmid pAd-miR-22. After digested with Pac I, the linearized pAd-miR-22 was transfected into 293A packaging cell line to generate recombinant adenoviruses Ad-miR-22. HepG2 cells were infected with Ad-miR-22 or control Ad-GFP (adenoviruses expressing green fluorescent protein), and then the miR-22 expression levels were analyzed by qPCR. The result shows that adenovirus-mediated overexpression of miR-22 significantly decreased insulin-induced glucose uptake in HepG2 cells. Moreover, overexpression of miR-22 markedly decreased insulin-induced phosphorylation of GSK-3β. miR-22 also increased the mRNA levels of gluconeogenic genes in HepG2 cells. Furthermore, Western blotting results indicate that the protein expression of SIRT1 decreased in Ad-miR-22 infected HepG2 cells as compared with Ad-GFP infected HepG2 cells. In summary, overexpressing of miR-22 significantly increased gluconeogenesis while decreased glucose uptake in HepG2 cells. The effect of miR-22 on glucose metabolism may be mediated by SIRT1.
Adenoviridae
;
genetics
;
Glucose
;
metabolism
;
Glycogen Synthase Kinase 3 beta
;
metabolism
;
Hep G2 Cells
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
Signal Transduction
;
genetics
;
Transfection
9.Targeted binding of estradiol with ESR1 promotes proliferation of human chondrocytes by inhibiting activation of ERK signaling pathway.
Min LIU ; Weiwei XIE ; Wei ZHENG ; Danyang YIN ; Rui LUO ; Fengjin GUO
Journal of Southern Medical University 2019;39(2):134-143
OBJECTIVE:
To investigate the effect of estradiol (E2)/estrogen receptor 1 (ESR1) on the proliferation of human chondrocytes and explore the molecular mechanism.
METHODS:
The Ad-Easy adenovirus packaging system was used to construct and package the ESR1-overexpressing adenovirus Ad-ESR1. Western blotting and qPCR were used to detect the expression of ESR1 protein and mRNA in human chondrocyte C28I2 cells. In the cells treated with different adenoviruses, the effects of E2 were tested on the expressions of proteins related with cell autophagy and apoptosis and the phosphorylation of ERK signaling pathway using Western blotting. Immunofluorescence assay was used to observe the intracellular autophagic flow, flow cytometry was performed to analyze the cell apoptosis rate and the cell cycle changes, and qPCR was used to detect the expressions of PCNA, cyclin B1 and cyclin D1 mRNAs. The inhibitory effect of the specific inhibitor of ERK on the expressions of autophagy- and apoptosis-related genes at both the protein and mRNA levels were detected using Western blotting and qPCR.
RESULTS:
Transfection with the recombinant adenovirus overexpressing ESR1 and E2 treatment of C28I2 cells significantly enhanced the expressions of autophagy-related proteins LC3, ATG7, promoted the colocalization of LC3 and LAMP1 in the cytoplasm, increased the expressions of the proliferation-related marker genes PCNA, cyclin B1 and cyclin D1, and supressed the expressions of cleaved caspase-3, caspase-12 and pERK. RNA interference of ESR1 obviously lowered the expression levels of autophagy-related proteins in C28I2 cells, causing also suppression of the autophagic flow, increments of the expressions of apoptosis-related proteins and pERK, and down-regulated the expressions of the proliferation marker genes. Blocking ERK activation with the ERK inhibitor obviously inhibited the effects of E2/ESR1 on autophagy, proliferationrelated gene expressions and cell apoptosis.
CONCLUSIONS
The targeted binding of E2 with ESR1 promotes the proliferation of human chondrocytes possibly by inhibiting the activation of ERK signaling pathway to promote cell autophagy and induce cell apoptosis.
Adenoviridae
;
metabolism
;
Apoptosis
;
Autophagy
;
Autophagy-Related Protein 7
;
metabolism
;
Cell Line
;
Cell Proliferation
;
Chondrocytes
;
cytology
;
metabolism
;
Estradiol
;
metabolism
;
Estrogen Receptor alpha
;
metabolism
;
Humans
;
Lysosome-Associated Membrane Glycoproteins
;
metabolism
;
MAP Kinase Signaling System
;
Microtubule-Associated Proteins
;
metabolism
;
Transfection
10.Effects of MnSOD silence on in vitro tumorigenicity in NCI-H446 cells.
Qing YUAN ; Min WEN ; Xiang LI ; Ling SHU ; Jianguo CAO ; Jiansong ZHANG
Journal of Central South University(Medical Sciences) 2018;43(6):583-588
To investigate the effect of manganese superoxide dismutase (MnSOD) silence on the in vitro tumorigenicity in human small cell lung cancer NCI-H446 cells and the underlying mechanisms.
Methods: Sphere formation cells from NCI-H446 cells were obtained by suspension culture, while the expression of MnSOD and urokinase type plasminogen activator (uPAR) was analyzed by Western blot. Silence of MnSOD was performed by adenovirus infection in the second passage formation cells, and the effect of MnSOD silence on tumorigenicity in NCI-H446 cells was evaluated by sphere formation assay and soft-agar colony formation assay, while the expression of uPAR was analyzed by Western blot.
Results: Compared with NCI-H446 cells, the sphere formation rate, colony formation rate, and the expression of MnSOD and uPAR were significantly increased in the second passage sphere formation cells in NCI-H446 cells (P<0.05). Silence of MnSOD inhibited the sphere formation rate, colony formation rate, and the expression level of uPAR in the second passage sphere formation cells in NCI-H446 cells.
Conclusion: MnSOD may promote tumorigenicity in NCI-H446 cells by up-regulation of uPAR expression in vitro.
Adenoviridae
;
Carcinogenesis
;
Cell Line, Tumor
;
Humans
;
In Vitro Techniques
;
Lung Neoplasms
;
etiology
;
metabolism
;
RNA Interference
;
Receptors, Urokinase Plasminogen Activator
;
genetics
;
metabolism
;
Small Cell Lung Carcinoma
;
etiology
;
metabolism
;
Spheroids, Cellular
;
pathology
;
Superoxide Dismutase
;
genetics
;
metabolism
;
Tumor Stem Cell Assay
;
Up-Regulation

Result Analysis
Print
Save
E-mail