1.Excess Oxygen Supply for Different Time Periods Affect Energy Metabolism in Rat Alveolar Epithelial Type Ⅱ Cells.
Rong-Rong HUANG ; Shan-Shan QU ; Hong GUO ; Su-Heng CHEN ; Chuan-Qi YANG ; Jun-Mei ZHANG ; Yu-Lan LI
Acta Academiae Medicinae Sinicae 2023;45(1):9-15
Objective To observe the effect of excess oxygen supply for different time periods on the mitochondrial energy metabolism in alveolar epithelial type Ⅱ cells. Methods Rat RLE-6TN cells were assigned into a control group (21% O2 for 4 h) and excess oxygen supply groups (95% O2 for 1,2,3,and 4 h,res-pectively).The content of adenosine triphosphate (ATP),the activity of mitochondrial respiratory chain complex V,and the mitochondrial membrane potential were determined by luciferase assay,micro-assay,and fluorescent probe JC-1,respectively.Real-time fluorescence quantitative PCR was employed to determine the mRNA levels of NADH dehydrogenase subunit 1 (ND1),cytochrome b (Cytb),cytochrome C oxidase subunit I (COXI),and adenosine triphosphatase 6 (ATPase6) in the core subunits of mitochondrial respiratory chain complexes Ⅰ,Ⅲ,Ⅳ,and Ⅴ,respectively. Results Compared with the control group,excess oxygen supply for 1,2,3,and 4 h down-regulated the mRNA levels of ND1 (q=24.800,P<0.001;q=13.650,P<0.001;q=9.869,P<0.001;q=20.700,P<0.001),COXI (q=16.750,P<0.001;q=10.120,P<0.001;q=8.476,P<0.001;q=14.060,P<0.001),and ATPase6 (q=22.770,P<0.001;q=15.540,P<0.001;q=12.870,P<0.001;q=18.160,P<0.001).Moreover,excess oxygen supply for 1 h and 4 h decreased the ATPase activity (q=9.435,P<0.001;q=11.230,P<0.001) and ATP content (q=5.615,P=0.007;q=5.029,P=0.005).The excess oxygen supply for 2 h and 3 h did not cause significant changes in ATPase activity (q=0.156,P=0.914;q=3.197,P=0.116) and ATP content (q=0.859,P=0.557;q=1.273,P=0.652).There was no significant difference in mitochondrial membrane potential among the groups (F=0.303,P=0.869). Conclusion Short-term excess oxygen supply down-regulates the expression of the core subunits of mitochondrial respiratory chain complexes and reduces the activity of ATPase,leading to the energy metabolism disorder of alveolar epithelial type Ⅱ cells.
Animals
;
Rats
;
Energy Metabolism
;
Adenosine Triphosphate
;
Adenosine Triphosphatases
;
RNA, Messenger
;
Oxygen
2.Clinical application value of Huanglian Jiedu Pills in improving syndrome of excess heat and fire toxin based on phase Ⅱ clinical trial study on plasma ATP, 4-HNE, and ACTH levels.
Ke-Ke LUO ; Hai-Yu ZHAO ; Nan SI ; Bao-Lin BIAN ; Wen XIA ; Yun-Qin CHEN ; Meng-Xiao WANG ; Xiao-Lu WEI ; Xing LI ; Guang-Yuan QIN ; Jian YANG ; Yan-Yan ZHOU ; Hong-Jie WANG
China Journal of Chinese Materia Medica 2023;48(4):1124-1131
A randomized, double-blind, placebo-controlled, multi-center phase Ⅱ clinical trial design was used in this study to recruit subjects who were in line with the syndrome of excess heat and fire toxin, and were diagnosed as recurrent oral ulcers, gingivitis, and acute pharyngitis. A total of 240 cases were included and randomly divided into a placebo group and a Huanglian Jiedu Pills group. The clinical efficacy of Huanglian Jiedu Pills in treating the syndrome of excess heat and fire toxin was evaluated by using the traditional Chinese medicine(TCM) syndrome scale. Enzyme-linked immunosorbent assay(ELISA) was used to determine and evaluate the levels of adenosine triphosphate(ATP), 4-hydroxynonenal(4-HNE), and adrenocorticotropic hormone(ACTH) in plasma of the two groups before and after administration and to predict their application value as clinical biomarkers. The results showed that the disappearance rate of main symptoms in the Huanglian Jiedu Pills group was 69.17%, and that in the placebo group was 50.83%. The comparison between the Huanglian Jiedu Pills group and the placebo group showed that 4-HNE before and after administration was statistically significant(P<0.05). The content of 4-HNE in the Huanglian Jiedu Pills group decreased significantly after administration(P<0.05), but that in the placebo group had no statistical significance and showed an upward trend. After administration, the content of ATP in both Huanglian Jiedu Pills group and placebo group decreased significantly(P<0.05), indicating that the energy metabolism disorder was significantly improved after administration of Huanglian Jiedu Pills and the body's self-healing ability also alleviated the increase in ATP level caused by the syndrome of excess heat and fire toxin to a certain extent. ACTH in both Huanglian Jiedu Pills group and placebo group decreased significantly after administration(P<0.05). It is concluded that Huanglian Jiedu Pills has a significant clinical effect, and can significantly improve the abnormal levels of ATP and 4-HNE in plasma caused by the syndrome of excess heat and fire toxin, which are speculated to be the effective clinical biomarkers for Huanglian Jiedu Pills to treat the syndrome of excess heat and fire toxin.
Humans
;
Adrenocorticotropic Hormone
;
Hot Temperature
;
Medicine, Chinese Traditional
;
Adenosine Triphosphate
3.Shikonin induces hepatocellular carcinoma cell apoptosis by suppressing PKM2/PHD3/HIF-1α signaling pathway.
Huan Huan ZHANG ; Zhuo CHEN ; Xiang Di ZHAO ; Qiang HUO ; Xiu CHENG
Journal of Southern Medical University 2023;43(1):92-98
OBJECTIVE:
To investigate the mechanism of shikonin-induced death of human hepatocellular carcinoma SMMC-7721 cells.
METHODS:
Cultured SMMC-7721 cells and normal hepatocytes (L-02 cells) were treated with 4, 8, or 16 μmol/L shikonin, and the changes in cell viability was assessed using MTT assay. The levels of ATP and lactic acid in the cell cultures were detected using commercial kits. Co-immunoprecipitation and immunofluorescence staining were used to determine the relationship among pyruvate kinase M2 (PKM2), prolyl hydroxylase 3 (PHD3), and hypoxia-inducible factor-1α (HIF-1α). The expressions of PHD3, PKM2, HIF-1α, Bax, cleaved caspase-3, and Bcl-2 in SMMC-7721 cells were detected with Western blotting, and cell apoptosis was analyzed with annexin V-FITC/PI staining. The effects of RNA interference of PKM2 on PHD3 and HIF-1α expressions in SMMC-7721 cells were detected using Western blotting.
RESULTS:
The IC50 of shikonin against SMMC-7721 and L-02 cells was 8.041 μmol/L and 31.75 μmol/L, respectively. Treatment with shikonin significantly inhibited the protein expressions of PKM2, HIF-1α and PHD3 and nuclear translocation of PKM2 and HIF-1α in SMMC-7721 cells. Coimmunoprecipitation and immunofluorescence staining confirmed that shikonin inhibited the formation of PKM2/PHD3/HIF-1α complex and significantly reduced the contents of lactic acid and ATP in SMMC-7721 cells (P < 0.05). The expressions of PHD3 and HIF-1α decreased significantly after PKM2 knockdown (P < 0.05). Shikonin treatment significantly increased the apoptosis rate, enhanced the expressions of Bax and cleaved caspase-3, and decreased Bcl-2 expression in SMMC-7721 cells (P < 0.05).
CONCLUSIONS
Shikonin induces apoptosis of SMMC-7721 cells possibly by inhibiting aerobic glycolysis through the PKM2/PHD3/HIF-1α signaling pathway to cause energy supply dysfunction in the cells.
Humans
;
Prolyl Hydroxylases
;
Carcinoma, Hepatocellular
;
Caspase 3
;
bcl-2-Associated X Protein
;
Liver Neoplasms
;
Signal Transduction
;
Apoptosis
;
Adenosine Triphosphate
4.Asiatic acid improves insulin secretion of β cells in type 2 diabetes through TNF- α/Mfn2 pathway.
Lu LI ; Wei WANG ; Qiang XU ; Mingzhu HUANG
Journal of Zhejiang University. Medical sciences 2023;52(2):185-194
OBJECTIVES:
To investigate the effects and molecular mechanisms of asiatic acid on β-cell function in type 2 diabetes mellitus (T2DM).
METHODS:
The T2DM model was established by high fat diet and streptozotocin injection in ICR mice, and the effects of asiatic acid on glucose regulation were investigated in model mice. The islets were isolated from palmitic acid-treated diabetic mice. ELISA was used to detect the glucose-stimulated insulin secretion, tumor necrosis factor (TNF)-α and interleukin (IL)-6. ATP assay was applied to measure ATP production, and Western blotting was used to detect protein expression of mature β cell marker urocortin (Ucn) 3 and mitofusin (Mfn) 2. The regulatory effects of asiatic acid on glucose-stimulated insulin secretion (GSIS) and Ucn3 expression were also investigated after siRNA interference with Mfn2 or treatment with TNF-α.
RESULTS:
Asiatic acid with the dose of 25 mg·kg-1·d-1 had the best glycemic control in T2DM mice and improved the homeostasis model assessment β index. Asiatic acid increased the expression of Mfn2 and Ucn3 protein and improved the GSIS function of diabetic β cells in vitro and in vivo (both P<0.05). Moreover, it improved the ATP production of islets of T2DM mice in vitro (P<0.05). Interfering Mfn2 with siRNA blocked the up-regulation of Ucn3 and GSIS induced by asiatic acid. Asiatic acid inhibited islet TNF-α content and increased Mfn2 and Ucn3 protein expression inhibited by TNF-α.
CONCLUSIONS
Asiatic acid improves β cell insulin secretion function in T2DM mice by maintaining the β cell maturity, which may be related to the TNF-α/Mfn2 pathway.
Mice
;
Animals
;
Insulin Secretion
;
Diabetes Mellitus, Type 2/drug therapy*
;
Islets of Langerhans/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Insulin/therapeutic use*
;
Diabetes Mellitus, Experimental
;
Mice, Inbred ICR
;
Glucose/therapeutic use*
;
Interleukin-6/metabolism*
;
RNA, Small Interfering/pharmacology*
;
Adenosine Triphosphate
;
GTP Phosphohydrolases/therapeutic use*
5.Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors.
Andrii CHERNINSKYI ; Maksim STOROZHUK ; Oleksandr MAXIMYUK ; Vyacheslav KULYK ; Oleg KRISHTAL
Neuroscience Bulletin 2023;39(5):845-862
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Humans
;
Acid Sensing Ion Channels
;
Protons
;
Neurons
;
Brain Diseases
;
Adenosine Triphosphate/physiology*
6.Cryo-EM structures for the Mycobacterium tuberculosis iron-loaded siderophore transporter IrtAB.
Shan SUN ; Yan GAO ; Xiaolin YANG ; Xiuna YANG ; Tianyu HU ; Jingxi LIANG ; Zhiqi XIONG ; Yuting RAN ; Pengxuan REN ; Fang BAI ; Luke W GUDDAT ; Haitao YANG ; Zihe RAO ; Bing ZHANG
Protein & Cell 2023;14(6):448-458
The adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter, IrtAB, plays a vital role in the replication and viability of Mycobacterium tuberculosis (Mtb), where its function is to import iron-loaded siderophores. Unusually, it adopts the canonical type IV exporter fold. Herein, we report the structure of unliganded Mtb IrtAB and its structure in complex with ATP, ADP, or ATP analogue (AMP-PNP) at resolutions ranging from 2.8 to 3.5 Å. The structure of IrtAB bound ATP-Mg2+ shows a "head-to-tail" dimer of nucleotide-binding domains (NBDs), a closed amphipathic cavity within the transmembrane domains (TMDs), and a metal ion liganded to three histidine residues of IrtA in the cavity. Cryo-electron microscopy (Cryo-EM) structures and ATP hydrolysis assays show that the NBD of IrtA has a higher affinity for nucleotides and increased ATPase activity compared with IrtB. Moreover, the metal ion located in the TM region of IrtA is critical for the stabilization of the conformation of IrtAB during the transport cycle. This study provides a structural basis to explain the ATP-driven conformational changes that occur in IrtAB.
Siderophores/metabolism*
;
Iron/metabolism*
;
Mycobacterium tuberculosis/metabolism*
;
Cryoelectron Microscopy
;
Adenosine Triphosphate/metabolism*
;
ATP-Binding Cassette Transporters
7.Potentilla anserina polysaccharide alleviates cadmium-induced oxidative stress and apoptosis of H9c2 cells by regulating the MG53-mediated RISK pathway.
Lixia ZHAO ; Ju CHENG ; Di LIU ; Hongxia GONG ; Decheng BAI ; Wei SUN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):279-291
Oxidative stress plays a crucial role in cadmium (Cd)-induced myocardial injury. Mitsugumin 53 (MG53) and its mediated reperfusion injury salvage kinase (RISK) pathway have been demonstrated to be closely related to myocardial oxidative damage. Potentilla anserina L. polysaccharide (PAP) is a polysaccharide with antioxidant capacity, which exerts protective effect on Cd-induced damage. However, it remains unknown whether PAP can prevent and treat Cd-induced cardiomyocyte damages. The present study was desgined to explore the effect of PAP on Cd-induced damage in H9c2 cells based on MG53 and the mediated RISK pathway. For in vitro evaluation, cell viability and apoptosis rate were analyzed by CCK-8 assay and flow cytometry, respectively. Furthermore, oxidative stress was assessed by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining and using superoxide dismutase (SOD), catalase (CAT), and glutathione/oxidized glutathione (GSH/GSSG) kits. The mitochondrial function was measured by JC-10 staining and ATP detection assay. Western blot was performed to detect the expression of proteins related to MG53, the RISK pathway, and apoptosis. The results indicated that Cd increased the levels of reactive oxygen species (ROS) in H9c2 cells. Cd decreased the activities of SOD and CAT and the ratio of GSH/GSSG, resulting in decreases in cell viability and increases in apoptosis. Interestingly, PAP reversed Cd-induced oxidative stress and cell apoptosis. Meanwhile, Cd reduced the expression of MG53 in H9c2 cells and inhibited the RISK pathway, which was mediated by decreasing the ratio of p-AktSer473/Akt, p-GSK3βSer9/GSK3β and p-ERK1/2/ERK1/2. In addition, Cd impaired mitochondrial function, which involved a reduction in ATP content and mitochondrial membrane potential (MMP), and an increase in the ratio of Bax/Bcl-2, cytoplasmic cytochrome c/mitochondrial cytochrome c, and Cleaved-Caspase 3/Pro-Caspase 3. Importantly, PAP alleviated Cd-induced MG53 reduction, activated the RISK pathway, and reduced mitochondrial damage. Interestingly, knockdown of MG53 or inhibition of the RISK pathway attenuated the protective effect of PAP in Cd-induced H9c2 cells. In sum, PAP reduces Cd-induced damage in H9c2 cells, which is mediated by increasing MG53 expression and activating the RISK pathway.
Cadmium/metabolism*
;
Caspase 3/metabolism*
;
Potentilla/metabolism*
;
Glycogen Synthase Kinase 3 beta/pharmacology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Cytochromes c/metabolism*
;
Glutathione Disulfide/pharmacology*
;
Oxidative Stress
;
Myocytes, Cardiac
;
Reactive Oxygen Species/metabolism*
;
Reperfusion Injury/metabolism*
;
Apoptosis
;
Polysaccharides/pharmacology*
;
Adenosine Triphosphate/metabolism*
8.A comprehensive review of natural products with anti-hypoxic activity.
Juncai LIU ; Zhen GE ; Xiao JIANG ; Jingjing ZHANG ; Jianan SUN ; Xiangzhao MAO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(7):499-515
Natural products exhibit substantial impacts in the field of anti-hypoxic traetment. Hypoxia can cause altitude sickness and other negative effect on the body. Headache, coma, exhaustion, vomiting and, in severe cases, death are some of the clinical signs. Currently, hypoxia is no longer just a concern in plateau regions; it is also one of the issues that can not be ignored by urban residents. This review covered polysaccharides, alkaloids, saponins, flavonoids, peptides and traditional Chinese compound prescriptions as natural products to protect against hypoxia. The active ingredients, effectiveness and mechanisms were discussed. The related anti-hypoxic mechanisms involve increasing the hemoglobin (HB) content, glycogen content and adenosine triphosphate (ATP) content, removing excessive reactive oxygen species (ROS), reducing lipid peroxidation, regulating the levels of related enzymes in cells, protecting the structural and functional integrity of the mitochondria and regulating the expression of apoptosis-related genes. These comprehensive summaries are beneficial to anti-hypoxic research and provide useful information for the development of anti-hypoxic products.
Humans
;
Biological Products/therapeutic use*
;
Hypoxia/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Adenosine Triphosphate/metabolism*
;
Alkaloids
9.Effects and mechanism of knocking down lncRNA H19 to inhibit lipid accumulation in human THP-1 cells-derived macrophages.
Xuemei WANG ; Yue CHE ; Jieying WANG ; Ke MEN
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):884-890
Objective To investigate the effects of long noncoding RNA H19 on lipid accumulation of macrophages under high fat stress and its mechanism. Methods Human THP-1 cells-derived macrophages were incubated with ox-LDL, and the effects of H19 siRNA intervention on lipid accumulation was observed. The THP-1 cells were divided into control group (conventional culture), ox-LDL group, siRNA negative control (NC siRNA) combined with ox-LDL treatment group, and H19 siRNA combined with ox-LDL treatment group. Oil red O staining was used to determine the lipid accumulation in cells, and cholesterol concentration was analyzed by enzymatic method; ATP assay kit for detecting celluar ATP content; colorimetry was used to detect the levels of oxidative stress indicators and ELISA was used to detect the levels of monocyte chemoattractant protein-1 (MCP-1) in the cell supernatant. Western blot analysis was used to detect the protein expression of ATP binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor α (PPARα), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and nuclear factor κB p-p65 (NF-κB p-p65). Results Knockdown H19 significantly inhibited intracellular lipid accumulation, decreased total cholesterol (TC) and cholesterol ester (CE) content, and decreased CE/TC ratio. Knockdown H19 significantly alleviated cell damage including an increase in ATP content, a decrease in oxidative stress levels and a decrease in MCP-1 levels, which caused by high-fat stress. H19 siRNA upregulated expression of ABCA1, PPARα and PGC-1α in THP-1 derived macrophages, downregulated NF-κB signal pathway. Conclusion Knockdown H19 upregulates PGC-1α expression in THP-1 cells and downregulates NF-κB pathway, which promotes cholesterol reverse transport, reduces inflammatory reaction and inhibits lipid accumulation.
Humans
;
Adenosine Triphosphate
;
Cholesterol
;
NF-kappa B
;
PPAR alpha
;
RNA, Long Noncoding/genetics*
;
RNA, Small Interfering/genetics*
;
THP-1 Cells
;
Macrophages/metabolism*
;
Lipid Metabolism
10.Clinical and genetic analysis of essential hypertension with CYB gene m.15024G>A mutation.
Yunfan HE ; Wenxu LI ; Zhen LIU ; Juanjuan ZHANG ; Minxin GUAN
Journal of Zhejiang University. Medical sciences 2023;52(4):510-517
OBJECTIVES:
To explore the role of mitochondrial CYB 15024G>A mutation in the development of essential hypertension.
METHODS:
Mitochondrial genome sequences of hypertensive patients were obtained from previous studies. Clinical and genetic data of a hypertensive patient with mitochondrial CYB 15024G>A mutation and its pedigree were analyzed. Lymphocytes derived from patient and family members were transformed into immortalized lymphoblastoid cell lines, and the levels of adenosine triphosphate (ATP), mitochondrial membrane potential and intracellular reactive oxygen species (ROS) were detected.
RESULTS:
The penetrance of this essential hypertension family was 42.9%, and the age of onset was 46-68 years old. Mitochondrial genome sequencing results showed that all maternal members carried a highly conserved mitochondrial CYB 15024G>A mutation. This mutation could affect the free energy of mitochondrial CYB for secondary and tertiary structure and protein folding, thereby changing its structural stability and the structure of the electron transfer function area around the mutation site. Compared with the control, the cell line carrying the mitochondrial CYB 15024G>A mutation showed significantly decreased levels of mitochondrial CYB, ATP and mitochondrial membrane potential, and increased levels of ROS (P<0.01).
CONCLUSIONS
Mitochondrial CYB 15024G>A mutation may affect the structure of respiratory chain subunits and mitochondrial function, leading to cell dysfunction, which suggests that the mutation may play a synergistic role in essential hypertension.
Humans
;
Middle Aged
;
Aged
;
Reactive Oxygen Species
;
Essential Hypertension/genetics*
;
Adenosine Triphosphate
;
Cell Line
;
Mutation

Result Analysis
Print
Save
E-mail