1.Chinese expert consensus on drug interaction management of poly ADP-ribose polymerase inhibitors.
Chinese Journal of Oncology 2023;45(7):584-593
Poly ADP-ribose polymerase inhibitors (PARPi), which approved in recent years, are recommended for ovarian cancer, breast cancer, pancreatic cancer, prostate cancer and other cancers by The National Comprehensive Cancer Network (NCCN) and Chinese Society of Clinical Oncology (CSCO) guidelines. Because most of PARPi are metabolized by cytochrome P450 enzyme system, there are extensive interactions with other drugs commonly used in cancer patients. By setting up a consensus working group including pharmaceutical experts, clinical experts and methodology experts, this paper forms a consensus according to the following steps: determine clinical problems, data retrieval and evaluation, Delphi method to form recommendations, finally formation expert opinion on PARPi interaction management. This paper will provide practical reference for clinical medical staff.
Male
;
Female
;
Humans
;
Poly(ADP-ribose) Polymerase Inhibitors/pharmacology*
;
Consensus
;
Ovarian Neoplasms/drug therapy*
;
Drug Interactions
;
Adenosine Diphosphate Ribose/therapeutic use*
2.Molluscicidal activity of the secondary metabolites from Streptomyces nigrogriseolus XD 2-7 against Oncomelania hupensis and its preliminary mechanisms of molluscicidal actions.
Yun Tian XING ; Jia Kai YAO ; Guo Li QU ; Su Yang ZHANG ; Jian Rong DAI ; Bai Nian FENG
Chinese Journal of Schistosomiasis Control 2022;34(3):269-276
OBJECTIVE:
To evaluate the storage stability of metabolites from actinomycetes Streptomyces nigrogriseolus XD 2-7 and the mollcuscicidal activity against Oncomelania hupensis in the laboratory, and to preliminarily explore the mechanisms of the molluscicidal activity.
METHODS:
The fermentation supernatant of S. nigrogriseolus XD 2-7 was prepared and stored at -20, 4 °C and 28 °C without light for 10 d; then, the molluscicidal effect was tested against O. hupensis following immersion for 72 h. The fermentation supernatant was boiled in a 100 °C water bath for 30 min and recovered to room temperature, and then the molluscicidal effect was tested against O. hupensis following immersion for 72 h. The pH values of the fermentation supernatant were adjusted to 4.0, 6.0 and 9.0 with concentrated hydrochloric acid and sodium hydroxide, and the fermentation supernatant was stilled at room temperature for 12 h, with its pH adjusted to 7.0; then, the molluscicidal effect was tested against O. hupensis following immersion for 72 h. The fermentation product of S. nigrogriseolus XD 2-7was isolated and purified four times with macroporous resin, silica gel and octadecylsilane bonded silica gel. The final products were prepared into solutions at concentrations of 10.00, 5.00, 2.50, 1.25 mg/L and 0.63 mg/L, and the molluscicidal effect of the final productswas tested against O. hupensis following immersion for 72 h, while dechlorination water served as blank controls, and 0.10 mg/L niclosamide served as positive control. The adenosine triphosphate (ATP) and adenosine diphosphate (ADP) levels were measured in in O. hupensis soft tissues using high performance liquid chromatography (HPLC) following exposure to the final purified fermentation products of S. nigrogriseolus XD 2-7.
RESULTS:
After the fermentation supernatant of S. nigrogriseolus XD 2-7 was placed at -20, 4 °C and 28 °C without light for 10 d, immersion in the stock solution and solutions at 10- and 50-fold dilutions for 72 h resulted in a 100% (30/30) O. hupensis mortality. Following boiling at 100 °C for 30 min, immersion in the stock solution and solutions at 10- and 50-fold dilutions for 72 h resulted in a 100.00% (30/30) O. hupensis mortality. Following storage at pH values of 4.0 and 6.0 for 12 h, immersion in the fermentation supernatant of S. nigrogriseolus XD 2-7 for 72 h resulted in a 100.00% (30/30) O. hupensis mortality, and following storage at a pH value of 9.0 for 12 h, immersion in the fermentation supernatant of S. nigrogriseolus XD 2-7 for 72 h resulted in a 33.33% (10/30) O. hupensis mortality (χ2 = 30.000, P < 0.05). The minimum concentration of the final purified fermentation products of S. nigrogriseolus XD 2-7 was 1.25 mg/L for achieving a 100% (30/30) O. hupensis mortality. The ATP level was significantly lower in O. hupensis soft tissues exposed to 0.10 mg/L and 1.00 mg/L of the final purified fermentation products of S. nigrogriseolus XD 2-7 than in controls (F = 7.274, P < 0.05), while no significant difference was detected in the ADP level between the treatment group and controls (F = 2.485, P > 0.05).
CONCLUSIONS
The active mollcuscicidal ingredients of the S. nigrogriseolus XD 2-7 metabolites are maintained stably at -20, 4 °C and 28 °C for 10 d, and are heat and acid resistant but not alkali resistant. The metabolites from S. nigrogriseolus XD 2-7 may cause energy metabolism disorders in O. hupensis, leading to O. hupensis death.
Adenosine Diphosphate/pharmacology*
;
Adenosine Triphosphate
;
Animals
;
Molluscacides/pharmacology*
;
Silica Gel/pharmacology*
;
Snails
;
Streptomyces
;
Water
3.Antiplatelet and myocardial protective effect of Shexiang Tongxin Dropping Pill in patients undergoing percutaneous coronary intervention: A randomized controlled trial.
Yan-Jun LIN ; Kun-Li JIAO ; Bo LIU ; Lu FANG ; Shu MENG
Journal of Integrative Medicine 2022;20(2):126-134
BACKGROUND:
High on-clopidogrel platelet reactivity could be partially explained by loss-of-function alleles of CYP2C19, the enzyme that converts clopidogrel into its active form. Shexiang Tongxin Dropping Pill (STDP) is a traditional Chinese medicine to treat angina pectoris. STDP has been shown to improve blood flow in patients with slow coronary flow and attenuate atherosclerosis in apolipoprotein E-deficient mice. However, whether STDP can affect platelet function remains unknown.
OBJECTIVE:
The purpose of this study is to examine the potential effects of STDP on platelet function in patients undergoing percutaneous coronary intervention (PCI) for unstable angina. The interaction between the effects of STDP with polymorphisms of CYP2C19 was also investigated.
DESIGN, PARTICIPANTS AND INTERVENTION:
This was a single-center, randomized controlled trial in patients undergoing elective PCI for unstable angina. Eligible subjects were randomized to receive STDP (210 mg per day) plus dual antiplatelet therapy (DAPT) with clopidogrel and aspirin or DAPT alone.
MAIN OUTCOME MEASURES:
The primary outcome was platelet function, reflected by adenosine diphosphate (ADP)-induced platelet aggregation and platelet microparticles (PMPs). The secondary outcomes were major adverse cardiovascular events (MACEs) including recurrent ischemia or myocardial infarction, repeat PCI and cardiac death; blood biomarkers for myocardial injury including creatine kinase-MB isoenzyme (CK-MB) and high-sensitive troponin I (hsTnI); and biomarkers for inflammation including intercellular cell adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-1) and galectin-3.
RESULTS:
A total of 118 subjects (mean age: [66.8 ± 8.9] years; male: 59.8%) were included into analysis: 58 in the control group and 60 in the STDP group. CYP2C19 genotype distribution was comparable between the 2 groups. In comparison to the control group, the STDP group had significantly lower CK-MB (P < 0.05) but similar hsTnI (P > 0.05) at 24 h after PCI, lower ICAM-1, VCAM-1, MCP-1 and galectin-3 at 3 months (all P < 0.05) but not at 7 days after PCI (P > 0.05). At 3 months, the STDP group had lower PMP number ([42.9 ± 37.3] vs. [67.8 ± 53.1] counts/μL in the control group, P = 0.05). Subgroup analysis showed that STDP increased percentage inhibition of ADP-induced platelet aggregation only in slow metabolizers (66.0% ± 20.8% in STDP group vs. 36.0% ± 28.1% in the control group, P < 0.05), but not in intermediate or fast metabolizers. The rate of MACEs during the 3-month follow-up did not differ between the two groups.
CONCLUSION:
STDP produced antiplatelet, anti-inflammatory and cardioprotective effects. Subgroup analysis indicated that STDP inhibited residual platelet reactivity in slow metabolizers only.
TRIAL REGISTRATION
This study was registered on www.chictr.org.cn: ChiCTR-IPR-16009785.
Adenosine Diphosphate
;
Angina, Unstable/chemically induced*
;
Animals
;
Biomarkers
;
Clopidogrel
;
Cytochrome P-450 CYP2C19/genetics*
;
Drugs, Chinese Herbal
;
Galectin 3
;
Humans
;
Intercellular Adhesion Molecule-1
;
Male
;
Mice
;
Percutaneous Coronary Intervention/adverse effects*
;
Platelet Aggregation Inhibitors/adverse effects*
;
Vascular Cell Adhesion Molecule-1/genetics*
4.Main Factors Influencing the Platelet Spreading.
Liu-Xia YUAN ; Hong-Lei YE ; Meng-Nan YANG ; Xin-Xin GE ; Rong YAN ; Ke-Sheng DAI
Journal of Experimental Hematology 2022;30(3):919-923
OBJECTIVE:
To explore the main factors of platelet spreading and provide the foundation for related research.
METHODS:
Platelets (2×107/ml) were draw from C57BL/6J mouse and kept at 22 ℃ for 1-2 hours. Platelets (2×107/ml) were were allowed to adhere and spread on the fibrinogen-coated slides, after staining F-actin in platelets, the platelets were observed with the confocal microscopy. The effects of different concentrations of fibrinogen (10 μg/ml, 30 μg/ml, 100 μg/ml) and kinds of agonists [thrombin(0.01,0.05,0.1 U/ml), ADP(5,10,20 μmol/L), U46619(0.125,0.25,0.5 μmol/L)] on platelets were analyzed. The platelet spreading was successful if the spreading rate was higher after treated with agonists.
RESULTS:
Compared to the group which coated with 10 μg/ml and 100 μg/ml fibrinogen, the platelet density is optimal when coated with 30 μg/ml fibrinogen. In addition, under the stimulation of thrombin, ADP and U46619, the spreading rate of platelets showed a certain concentration-dependent increasing.
CONCLUSION
The platelet spreading is easily influenced by various factors, the platelet spreading can be induced successfully at 0.1 U/ml thrombin, 20 μmol/L ADP and 0.5 μmol/L U46619 on the slide coated with 30 μg/ml fibrinogen.
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology*
;
Adenosine Diphosphate
;
Animals
;
Blood Platelets/physiology*
;
Fibrinogen
;
Humans
;
Mice
;
Mice, Inbred C57BL
;
Platelet Adhesiveness/physiology*
;
Thrombin/pharmacology*
5.Effects of arsenic and its main metabolites on A549 cell apoptosis and the expression of pro-apoptotic genes Bad and Bik.
Qian ZHOU ; Jin Yao YIN ; Jing Wen TAN ; Shu Ting LI ; Cheng Lan JIANG ; Yue Feng HE
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(9):661-667
Objective: To investigate the effect of arsenic and its main metabolites on the apoptosis of human lung adenocarcinoma cell line A549 and the expression of pro-apoptotic genes Bad and Bik. Methods: In October 2020, A549 cells were recovered and cultured, and the cell viability was detected by the cell counting reagent CCK-8 to determine the concentration and time of sodium arsenite exposure to A549. The study was divided into NaAsO(2) exposure groups and metobol: le expoure groups: the metabolite comparison groups were subdivided into the control group, the monomethylarsinic acid exposure group (60 μmol/L) , and the dimethylarsinic acid exposure group (60 μmol/L) ; sodium arsenite dose groups were subdivided into 4 groups: control group (0) , 20, 40, 60 μmol/L sodium arsenite NaAsO(2). Hoechst 33342/propidium iodide double staining (Ho/PI) was used to observe cell apoptosis and real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression levels of Bad and Bik mRNA in cells after exposure. Western blotting was used to detect the protein expressions of Bad, P-Bad-S112, Bik, cleaved Bik and downstream proteins poly ADP-ribose polymerase PARP1 and cytochrome C (Cyt-C) , using spectrophotometry to detect the activity changes of caspase 3, 6, 8, 9. Results: Compared with the control group, the proportion of apoptotic cells in the 20, 40, and 60 μmol/L NaAsO(2) dose groups increased significantly (P<0.01) , and the expression levels of Bad, Bik mRNA, the protein expression levels of Bad, P-Bad-S112, Bik, cleaved Bik, PARP1, Cyt-C were increased (all P<0.05) , and the activities of Caspase 3, 6, 8, and 9 were significantly increased with significantly differences (P<0.05) . Compared with the control group, the expression level of Bad mRNA in the DMA exposure group (1.439±0.173) was increased with a significant difference (P=0.024) , but there was no significant difference in the expression level of Bik mRNA (P=0.788) . There was no significant differences in the expression levels of Bad and Bik mRNA in the poison groups (P=0.085, 0.063) . Compared with the control group, the gray values of proteins Bad, Bik, PARP1 and Cyt-C exposed to MMA were 0.696±0.023, 0.707±0.014, 0.907±0.031, 1.032±0.016, and there was no significant difference between the two groups (P=0.469, 0.669, 0.859, 0.771) ; the gray values of proteins Bad, Bik, PARP1 and Cyt-C exposed to DMA were 0.698±0.030, 0.705±0.022, 0.908±0.015, 1.029±0.010, and there was no difference between the two groups (P=0.479, 0.636, 0.803, 0.984) . Conclusion: Sodium arsenite induces the overexpression of Bad and Bik proteins, initiates the negative feedback regulation of phosphorylated Bad and the degradation of Bik, activates the downstream proteins PARP1, Cyt-C and Caspase pathways, and mediates the apoptosis of A549 cells.
A549 Cells
;
Adenosine Diphosphate Ribose/pharmacology*
;
Apoptosis
;
Apoptosis Regulatory Proteins
;
Arsenic
;
Arsenites
;
Cacodylic Acid/pharmacology*
;
Caspase 3
;
Caspases/pharmacology*
;
Cytochromes c/pharmacology*
;
Humans
;
Mitochondrial Proteins/pharmacology*
;
Poisons
;
Propidium/pharmacology*
;
RNA, Messenger
;
Sincalide/pharmacology*
;
Sodium Compounds
;
bcl-Associated Death Protein/metabolism*
6.Poly adenosine diphosphate-ribosylation and neurodegenerative diseases.
Journal of Zhejiang University. Medical sciences 2020;49(1):100-106
The morbidity of neurodegenerative diseases are increased in recent years, however, the treatment is limited. Poly ADP-ribosylation (PARylation) is a post-translational modification of protein that catalyzed by poly(ADP-ribose) polymerase (PARP). Studies have shown that PARylation is involved in many neurodegenerative diseases such as stroke, Parkinson's diseases, Alzheimer's disease, amyotrophic lateral sclerosis and so on, by affecting intracellular translocation of protein molecules, protein aggregation, protein activity, and cell death. PARP inhibitors have showed neuroprotective efficacy for neurodegenerative diseases in pre-clinical studies and phase Ⅰ clinical trials. To find new PARP inhibitors with more specific effects and specific pharmacokinetic characteristics will be the new direction for the treatment of neurodegenerative diseases. This paper reviews the recent progress on PARylation in neurodegenerative diseases.
ADP-Ribosylation
;
Humans
;
Neurodegenerative Diseases
;
physiopathology
;
Poly Adenosine Diphosphate Ribose
;
Poly(ADP-ribose) Polymerases
;
metabolism
7.Characterization of the distinct mechanism of agonist-induced canine platelet activation
Preeti K CHAUDHARY ; Soochong KIM
Journal of Veterinary Science 2019;20(1):10-15
Platelet activation has a major role in hemostasis and thrombosis. Various agonists including adenosine diphosphate (ADP) and thrombin interact with G protein-coupled receptors (GPCRs) which transduce signals through various G proteins. Recent studies have elucidated the role of GPCRs and their corresponding G proteins in the regulation of events involved in platelet activation. However, agonist-induced platelet activation in companion animals has not been elucidated. This study was designed to characterize the platelet response to various agonists in dog platelets. We found that 2-methylthio-ADP-induced dog platelet aggregation was blocked in the presence of either P2Y₁ receptor antagonist MRS2179 or P2Y₁₂ receptor antagonist AR-C69931MX, suggesting that co-activation of both the P2Y₁ and P2Y₁₂ receptors is required for ADP-induced platelet aggregation. Thrombin-induced dog platelet aggregation was inhibited in the presence of either AR-C69931MX or the PKC inhibitor GF109203X, suggesting that thrombin requires secreted ADP to induce platelet aggregation in dog platelets. In addition, thrombin-mediated Akt phosphorylation was inhibited in the presence of GF109203X or AR-C69931MX, indicating that thrombin causes Gi stimulation through the P2Y₁₂ receptor by secreted ADP in dog platelets. Unlike human and murine platelets, protease-activated receptor 4 (PAR4)-activating peptide AYPGKF failed to cause dog platelet aggregation. Moreover, PAR1-activating peptide SFLLRN or co-stimulation of SFLLRN and AYPGKF failed to induce dog platelet aggregation. We conclude that ADP induces platelet aggregation through the P2Y₁ and P2Y₁₂ receptors in dogs. Unlike human and murine platelets, selective activation of the PAR4 receptor may be insufficient to cause platelet aggregation in dog platelets.
Adenosine Diphosphate
;
Animals
;
Blood Platelets
;
Dogs
;
GTP-Binding Proteins
;
Hemostasis
;
Humans
;
Pets
;
Phosphorylation
;
Platelet Activation
;
Platelet Aggregation
;
Receptors, Proteinase-Activated
;
Thrombin
;
Thrombosis
8.Current state and outlook for drug repositioning anticipated in the field of ovarian cancer.
Yusuke KOBAYASHI ; Kouji BANNO ; Haruko KUNITOMI ; Eiichiro TOMINAGA ; Daisuke AOKI
Journal of Gynecologic Oncology 2019;30(1):e10-
Ovarian cancer is the seventh most common cancer and the eighth most common cause of cancer mortality in women. Although standard chemotherapy is the established treatment for ovarian cancer, the prognosis remains poor, and it is highly anticipated that new drugs will be developed. New drugs, such as humanized anti-vascular endothelial growth factor monoclonal antibodies and poly ADP-ribose polymerase inhibitors, are expected to improve clinical outcomes of ovarian cancer. However, long-term, costly research is required to develop such new drugs, and soaring national healthcare costs are becoming a concern worldwide. In this social context, drug repositioning, wherein existing drugs are used to develop drugs with new indications for other diseases, has recently gained attention. Because trials have already confirmed the safety in humans and the pharmacokinetics of such drugs, the development period is shorter than the conventional development of a new drug, thereby reducing costs. This review discusses the available basic experimental and clinical data on drugs used for other types of cancer for which drug repositioning is anticipated to repurpose the drug for the treatment of ovarian cancer. These include statins, which are used to treat dyslipidemia; bisphosphonate, which is used to treat osteoporosis; metformin, which is used to treat diabetes; non-steroidal anti-inflammatory drugs; ivermectin, an antiparasitic agent; and itraconazole, an anti-fungal agent. These drugs will play an important role in future drug repositioning strategies for ovarian cancer. Furthermore, drug repositioning is anticipated to extend not only to ovarian cancer treatment but also to ovarian cancer prevention.
Adenosine Diphosphate Ribose
;
Anti-Inflammatory Agents, Non-Steroidal
;
Antibodies, Monoclonal
;
Drug Repositioning*
;
Drug Therapy
;
Dyslipidemias
;
Endothelial Growth Factors
;
Female
;
Health Care Costs
;
Humans
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors
;
Itraconazole
;
Ivermectin
;
Metformin
;
Mortality
;
Osteoporosis
;
Ovarian Neoplasms*
;
Pharmacokinetics
;
Prognosis
9.Methanol Extracts of Codium fragile Induces Apoptosis through G1/S Cell Cycle Arrest in FaDu Human Hypopharynx Squamous Carcinoma Cells
Seul Ah LEE ; Bo Ram PARK ; Sung Min MOON ; Do Kyung KIM ; Chun Sung KIM
International Journal of Oral Biology 2018;43(2):61-68
Codium fragile (Suringar) Hariot is an edible green seaweed that belong to the Codiaceae family and has been used in Oriental medicine for the treatment of enterobiasis, dropsy, and dysuria. Methanol extract of codium fragile has anti-oxidant, anti-inflammatory and anti-cancer properties, although the anti-cancer effect on oral cancer has not yet been reported. In this study, we investigated the anti-cancer activity and the mechanism of cell death by methanol extracts of Codium fragile (MeCF) on human FaDu hypopharyngeal squamous carcinoma cells. Our data showed that MeCF inhibits cell viability in a dose-dependent manner, and markedly induced apoptosis, as determined by the MTT assay, Live/Dead assay, and DAPI stain. In addition, MeCF induced the proteolytic cleavage of procaspase −3, −7, −9 and poly(ADP-ribose) polymerase(PARP), and upregulated or downregulated the expression of mitochondrial-apoptosis factor, Bax(pro-apoptotic factor), and Bcl-2(anti-apoptotic factor), . Futhermore, MeCF induced a cell cycle arrest at the G1/S phase through suppressing the expression of the cell cycle cascade proteins, p21, CDK4, CyclinD1, and phospho-Rb. Taken together, these results indicated that MeCF inhibits cell growth, and this inhibition is mediated by caspase- and mitochondrial-dependent apoptotic pathways through cell cycle arrest at the G1/S phase in human FaDu hypopharyngeal squamous carcinoma cells. Therefore, methanol extracts of Codium fragile can be provided as a novel chemotherapeutic drug due to its growth inhibition effects and induction of apoptosis in human oral cancer cells.
Apoptosis
;
Carcinoma, Squamous Cell
;
Cell Cycle Checkpoints
;
Cell Cycle
;
Cell Death
;
Cell Survival
;
Dysuria
;
Edema
;
Enterobiasis
;
Humans
;
Hypopharynx
;
Medicine, East Asian Traditional
;
Methanol
;
Mouth Neoplasms
;
Poly Adenosine Diphosphate Ribose
;
Seaweed
10.Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide.
Ah Young LEE ; Ji Myung CHOI ; Myoung Hee LEE ; Jaemin LEE ; Sanghyun LEE ; Eun Ju CHO
Nutrition Research and Practice 2018;12(2):93-100
BACKGROUND/OBJECTIVE: Oxidative stress plays a key role in neuronal cell damage, which is associated with neurodegenerative disease. The aim of present study was to investigate the neuroprotective effects of perilla oil (PO) and its active component, alpha-linolenic acid (ALA), against hydrogen peroxide (H₂O₂)-induced oxidative stress in SH-SY5Y neuronal cells. MATERIALS/METHODS: The SH-SY5Y human neuroblastoma cells exposed to 250 µM H₂O₂ for 24 h were treated with different concentrations of PO (25, 125, 250 and 500 µg/mL) and its major fatty acid, ALA (1, 2.5, 5 and 25 µ/mL). We examined the effects of PO and ALA on H₂O₂-induced cell viability, lactate dehydrogenase (LDH) release, and nuclear condensation. Moreover, we determined whether PO and ALA regulated the apoptosis-related protein expressions, such as cleaved-poly ADP ribose polymerase (PARP), cleaved caspase-9 and -3, BCL-2 and BAX. RESULTS: Treatment of H₂O₂ resulted in decreased cell viability, increased LDH release, and increase in the nuclei condensation as indicated by Hoechst 33342 staining. However, PO and ALA treatment significantly attenuated the neuronal cell death, indicating that PO and ALA potently blocked the H₂O₂-induced neuronal apoptosis. Furthermore, cleaved-PARP, cleaved caspase-9 and -3 activations were significantly decreased in the presence of PO and ALA, and the H₂O₂-mediated up-regulated BAX/BCL-2 ratio was blocked after treatment with PO and ALA. CONCLUSIONS: PO and its main fatty acid, ALA, exerted the protective activity from neuronal oxidative stress induced by H₂O₂. They regulated apoptotic pathway in neuronal cell death by alleviation of BAX/BCL-2 ratio, and down-regulation of cleaved-PARP and cleaved caspase-9 and -3. Although further studies are required to verify the protective mechanisms of PO and ALA from neuronal damage, PO and ALA are the promising agent against oxidative stress-induced apoptotic neuronal cell death.
Adenosine Diphosphate Ribose
;
alpha-Linolenic Acid*
;
Apoptosis
;
Caspase 9
;
Cell Death*
;
Cell Survival
;
Down-Regulation
;
Humans
;
Hydrogen Peroxide*
;
Hydrogen*
;
L-Lactate Dehydrogenase
;
Neuroblastoma
;
Neurodegenerative Diseases
;
Neurons*
;
Neuroprotective Agents
;
Oxidative Stress
;
Perilla*

Result Analysis
Print
Save
E-mail