1.Research progress on the role of mitochondrial complex I in the pathogenesis of Parkinson's disease.
Acta Physiologica Sinica 2025;77(1):167-180
Currently, the incidence of Parkinson's disease (PD) is on the rise. More and more evidences suggest that mitochondrial dysfunction plays a crucial role in the etiology of PD, and dysfunction of mitochondrial complex I (MCI) is one of the most critical factors leading to mitochondrial dysfunction. On one hand, MCI dysfunction stimulates dopaminergic neurons to produce reactive oxygen species (ROS). On the other hand, MCI dysfunction decreases dopaminergic neuron viability and reduces ATP production. All these outcomes promote the pathological progression of PD. This review summarizes research progress on the role of MCI in the pathogenesis of PD, as well as PD treatment strategies based on MCI.
Parkinson Disease/metabolism*
;
Humans
;
Electron Transport Complex I/metabolism*
;
Mitochondria/physiology*
;
Reactive Oxygen Species/metabolism*
;
Dopaminergic Neurons/metabolism*
;
Animals
;
Adenosine Triphosphate/metabolism*
2.Adar3 promotes macrophage M2 polarization and alleviates viral myocarditis by activating the Wnt/β-catenin signaling pathway.
Mengying ZHANG ; Zhi LI ; Weiya PEI ; Shujun WAN ; Xueqin LI ; Kun LYU ; Xiaolong ZHU
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):769-777
Objective To investigate the role and mechanism of RNA-Specific adenosine deaminase 3 (Adar3) in regulating macrophage polarization during Coxsackievirus B3(CVB3)-induced viral myocarditis (VM). Methods Bone marrow-derived macrophages (BMDM) from mice were cultured in vitro and induced into M1/M2 macrophages using interferon-gamma (IFN-γ)/lipopolysaccharide (LPS) or interleukin 4 (IL-4), respectively. The mRNA expression levels of Adar1, Adar2, and Adar3 in each group of cells were assessed by real-time quantitative PCR (qRT-PCR). Specific siRNAs targeting the Adar3 gene were designed, synthesized, and transiently transfected into M2 macrophages. The mRNA levels of M2 polarization-related marker genes-including arginase 1 (Arg1), chitinase 3-like molecule 3 (YM1/Chi3l3), and resistin-like molecule alpha (RELMα/FIZZ1)-were detected by qRT-PCR. RNA sequencing was performed to analyze the signaling pathways affected by Adar3. The expression levels of Wnt/β-catenin signaling pathway were further validated using qRT-PCR and Western blot. The adeno-associated virus overexpressing Adar3 was designed, synthesized, and injected into mice via tail vein. Three weeks later, a myocarditis mouse model was established. After an additional week, the phenotype and function of cardiac macrophages, as well as multiple indicators of VM (including echocardiography, body weight, histopathology and serology) were examined. Additionally, the protein levels of the Wnt/β-catenin signaling pathway were assessed. Results Compared to M0-type macrophages, the expression level of Adar3 was significantly increased in M2-type macrophages. After transfection of Adar3 siRNA, the mRNA levels of Arg1, YM1 and FIZZ1 in M2 macrophages were downregulated. RNA sequencing revealed 149 upregulated genes and 349 downregulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and subsequent validation experiments indicated that Adar3 modulated the Wnt/β-catenin signaling pathway. In vivo experiments demonstrated that Adar3 overexpression alleviated the cardiac dysfunction of VM mice. The proportion of M1 macrophages in the heart decreased, while the proportion of M2 macrophages increased. At the same time, the Adar3 overexpression activated the Wnt/β-catenin signaling pathway. Conclusion Adar3 promotes macrophage polarization toward the M2 phenotype by activating the Wnt/β-catenin signaling pathway, thereby alleviating VM.
Animals
;
Adenosine Deaminase/metabolism*
;
Macrophages/immunology*
;
Wnt Signaling Pathway/genetics*
;
Myocarditis/immunology*
;
Mice
;
Coxsackievirus Infections/metabolism*
;
Male
;
Mice, Inbred BALB C
;
Enterovirus B, Human/physiology*
;
beta Catenin/genetics*
3.Research progress on N6-methyladenosine and ferroptosis in childhood combined allergic rhinitis and asthma syndrome.
Jing-Yi LI ; Yu-Jian LI ; Sheng-Lin LAI ; Xuan KAN
Chinese Journal of Contemporary Pediatrics 2025;27(2):242-247
Combined allergic rhinitis and asthma syndrome (CARAS) is one of the common chronic airway inflammatory diseases in children. With the development of epigenetics, research on CARAS has gradually extended from protein levels to molecular levels, such as transcription and post-transcriptional regulation. N6-methyladenosine (m6A) methylation and ferroptosis have emerged as promising research hotspots in recent years, playing crucial roles in tumors, growth and development, and allergic diseases. This paper aims to summarize the characteristics of m6A and ferroptosis, along with their roles in the onset and progression of CARAS in children, thereby providing new insights and strategies for the diagnosis and treatment of childhood CARAS.
Humans
;
Adenosine/physiology*
;
Asthma/etiology*
;
Ferroptosis
;
Rhinitis, Allergic/etiology*
;
Child
4.Mitochondria derived from human embryonic stem cell-derived mesenchymal stem cells alleviate the inflammatory response in human gingival fibroblasts.
Bicong GAO ; Chenlu SHEN ; Kejia LV ; Xuehui LI ; Yongting ZHANG ; Fan SHI ; Hongyan DIAO ; Hua YAO
Journal of Zhejiang University. Science. B 2025;26(8):778-788
Periodontitis is a common oral disease caused by bacteria coupled with an excessive host immune response. Stem cell therapy can be a promising treatment strategy for periodontitis, but the relevant mechanism is complicated. This study aimed to explore the therapeutic potential of mitochondria from human embryonic stem cell-derived mesenchymal stem cells (hESC-MSCs) for the treatment of periodontitis. The gingival tissues of periodontitis patients are characterized by abnormal mitochondrial structure. Human gingival fibroblasts (HGFs) were exposed to 5 μg/mL lipopolysaccharide (LPS) for 24 h to establish a cell injury model. When treated with hESC-MSCs or mitochondria derived from hESC-MSCs, HGFs showed reduced expression of inflammatory genes, increased adenosine triphosphate (ATP) level, decreased reactive oxygen species (ROS) production, and enhanced mitochondrial function compared to the control. The average efficiency of isolated mitochondrial transfer by hESC-MSCs was determined to be 8.93%. Besides, a therapy of local mitochondrial injection in mice with LPS-induced periodontitis showed a reduction in inflammatory gene expression, as well as an increase in both the mitochondrial number and the aspect ratio in gingival tissues. In conclusion, our results indicate that mitochondria derived from hESC-MSCs can reduce the inflammatory response and improve mitochondrial function in HGFs, suggesting that the transfer of mitochondria between hESC-MSCs and HGFs serves as a potential mechanism underlying the therapeutic effect of stem cells.
Humans
;
Gingiva/cytology*
;
Fibroblasts/metabolism*
;
Mitochondria/physiology*
;
Mesenchymal Stem Cells/cytology*
;
Animals
;
Periodontitis/therapy*
;
Mice
;
Reactive Oxygen Species/metabolism*
;
Inflammation
;
Lipopolysaccharides
;
Human Embryonic Stem Cells/cytology*
;
Cells, Cultured
;
Adenosine Triphosphate/metabolism*
;
Male
5.Fto-dependent Vdac3 m6A Modification Regulates Neuronal Ferroptosis Induced by the Post-ICH Mass Effect and Transferrin.
Zhongmou XU ; Haiying LI ; Xiang LI ; Jinxin LU ; Chang CAO ; Lu PENG ; Lianxin LI ; John ZHANG ; Gang CHEN
Neuroscience Bulletin 2025;41(6):970-986
During the hyperacute phase of intracerebral hemorrhage (ICH), the mass effect and blood components mechanically lead to brain damage and neurotoxicity. Our findings revealed that the mass effect and transferrin precipitate neuronal oxidative stress and iron uptake, culminating in ferroptosis in neurons. M6A (N6-methyladenosine) modification, the most prevalent mRNA modification, plays a critical role in various cell death pathways. The Fto (fat mass and obesity-associated protein) demethylase has been implicated in numerous signaling pathways of neurological diseases by modulating m6A mRNA levels. Regulation of Fto protein levels in neurons effectively mitigated mass effect-induced neuronal ferroptosis. Applying nanopore direct RNA sequencing, we identified voltage-dependent anion channel 3 (Vdac3) as a potential target associated with ferroptosis. Fto influenced neuronal ferroptosis by regulating the m6A methylation of Vdac3 mRNA. These findings elucidate the intricate interplay between Fto, Vdac3, m6A methylation, and ferroptosis in neurons during the hyperacute phase post-ICH and suggest novel therapeutic strategies for ICH.
Ferroptosis/physiology*
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Animals
;
Neurons/metabolism*
;
Transferrin/pharmacology*
;
Mice
;
Methylation
;
Mice, Inbred C57BL
;
Adenosine/metabolism*
;
RNA, Messenger/metabolism*
;
Male
;
Oxidative Stress/physiology*
6.Research progress in energy metabolism design of cell factories.
Yiqun YANG ; Qingqing LIU ; Shuo TIAN ; Tao YU
Chinese Journal of Biotechnology 2025;41(3):1098-1111
Energy metabolism regulation plays a pivotal role in metabolic engineering. It mainly achieves the balance of material and energy metabolism or maximizes the utilization of materials and energy by regulating the supply intensity and mode of ATP and reducing electron carriers in cells. On the one hand, the production efficiency can be increased by changing the distribution of material metabolic flow. On the other hand, the thermodynamic parameters of enzyme-catalyzed reactions can be altered to affect the reaction balance, and thus the production costs are reduced. Therefore, energy metabolism regulation is expected to become a favorable tool for the modification of microbial cell factories, thereby increasing the production of target metabolites and reducing production costs. This article introduces the commonly used energy metabolism regulation methods and their effects on cell factories, aiming to provide a reference for the efficient construction of microbial cell factories.
Energy Metabolism/physiology*
;
Metabolic Engineering/methods*
;
Adenosine Triphosphate/metabolism*
;
Industrial Microbiology/methods*
7.m6A modification regulates PLK1 expression and mitosis.
Xiaoli CHANG ; Xin YAN ; Zhenyu YANG ; Shuwen CHENG ; Xiaofeng ZHU ; Zhantong TANG ; Wenxia TIAN ; Yujun ZHAO ; Yongbo PAN ; Shan GAO
Chinese Journal of Biotechnology 2025;41(4):1559-1572
N6-methyladenosine (m6A) modification plays a critical role in cell cycle regulation, while the mechanism of m6A in regulating mitosis remains underexplored. Here, we found that the total m6A modification level in cells increased during mitosis by the liquid chromatography-mass spectrometry/mass spectrometry and m6A dot blot assays. Silencing methyltransferase-like 3 (METTL3) or METTL14 results in delayed mitosis, abnormal spindle assembly, and chromosome segregation defects by the immunofluorescence. By analyzing transcriptome-wide m6A targets in HeLa cells, we identified polo-like kinase 1 (PLK1) as a key gene modified by m6A in regulating mitosis. Specifically, through immunoblotting and RNA pulldown, m6A modification inhibits PLK1 translation via YTH N6-methyladenosine RNA binding protein 1, thus mediating cell cycle homeostasis. Demethylation of PLK1 mRNA leads to significant mitotic abnormalities. These findings highlight the critical role of m6A in regulating mitosis and the potential of m6A as a therapeutic target in proliferative diseases such as cancer.
Humans
;
Polo-Like Kinase 1
;
Cell Cycle Proteins/metabolism*
;
Proto-Oncogene Proteins/metabolism*
;
Protein Serine-Threonine Kinases/metabolism*
;
Mitosis/physiology*
;
HeLa Cells
;
Adenosine/genetics*
;
Methyltransferases/metabolism*
;
RNA, Messenger/metabolism*
;
RNA-Binding Proteins/metabolism*
8.Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors.
Andrii CHERNINSKYI ; Maksim STOROZHUK ; Oleksandr MAXIMYUK ; Vyacheslav KULYK ; Oleg KRISHTAL
Neuroscience Bulletin 2023;39(5):845-862
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Humans
;
Acid Sensing Ion Channels
;
Protons
;
Neurons
;
Brain Diseases
;
Adenosine Triphosphate/physiology*
9.Main Factors Influencing the Platelet Spreading.
Liu-Xia YUAN ; Hong-Lei YE ; Meng-Nan YANG ; Xin-Xin GE ; Rong YAN ; Ke-Sheng DAI
Journal of Experimental Hematology 2022;30(3):919-923
OBJECTIVE:
To explore the main factors of platelet spreading and provide the foundation for related research.
METHODS:
Platelets (2×107/ml) were draw from C57BL/6J mouse and kept at 22 ℃ for 1-2 hours. Platelets (2×107/ml) were were allowed to adhere and spread on the fibrinogen-coated slides, after staining F-actin in platelets, the platelets were observed with the confocal microscopy. The effects of different concentrations of fibrinogen (10 μg/ml, 30 μg/ml, 100 μg/ml) and kinds of agonists [thrombin(0.01,0.05,0.1 U/ml), ADP(5,10,20 μmol/L), U46619(0.125,0.25,0.5 μmol/L)] on platelets were analyzed. The platelet spreading was successful if the spreading rate was higher after treated with agonists.
RESULTS:
Compared to the group which coated with 10 μg/ml and 100 μg/ml fibrinogen, the platelet density is optimal when coated with 30 μg/ml fibrinogen. In addition, under the stimulation of thrombin, ADP and U46619, the spreading rate of platelets showed a certain concentration-dependent increasing.
CONCLUSION
The platelet spreading is easily influenced by various factors, the platelet spreading can be induced successfully at 0.1 U/ml thrombin, 20 μmol/L ADP and 0.5 μmol/L U46619 on the slide coated with 30 μg/ml fibrinogen.
15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology*
;
Adenosine Diphosphate
;
Animals
;
Blood Platelets/physiology*
;
Fibrinogen
;
Humans
;
Mice
;
Mice, Inbred C57BL
;
Platelet Adhesiveness/physiology*
;
Thrombin/pharmacology*
10.Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection.
Rongjuan PEI ; Jianqi FENG ; Yecheng ZHANG ; Hao SUN ; Lian LI ; Xuejie YANG ; Jiangping HE ; Shuqi XIAO ; Jin XIONG ; Ying LIN ; Kun WEN ; Hongwei ZHOU ; Jiekai CHEN ; Zhili RONG ; Xinwen CHEN
Protein & Cell 2021;12(9):717-733
The coronavirus disease 2019 (COVID-19) pandemic is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is spread primary via respiratory droplets and infects the lungs. Currently widely used cell lines and animals are unable to accurately mimic human physiological conditions because of the abnormal status of cell lines (transformed or cancer cells) and species differences between animals and humans. Organoids are stem cell-derived self-organized three-dimensional culture in vitro and model the physiological conditions of natural organs. Here we showed that SARS-CoV-2 infected and extensively replicated in human embryonic stem cells (hESCs)-derived lung organoids, including airway and alveolar organoids which covered the complete infection and spread route for SARS-CoV-2 within lungs. The infected cells were ciliated, club, and alveolar type 2 (AT2) cells, which were sequentially located from the proximal to the distal airway and terminal alveoli, respectively. Additionally, RNA-seq revealed early cell response to virus infection including an unexpected downregulation of the metabolic processes, especially lipid metabolism, in addition to the well-known upregulation of immune response. Further, Remdesivir and a human neutralizing antibody potently inhibited SARS-CoV-2 replication in lung organoids. Therefore, human lung organoids can serve as a pathophysiological model to investigate the underlying mechanism of SARS-CoV-2 infection and to discover and test therapeutic drugs for COVID-19.
Adenosine Monophosphate/therapeutic use*
;
Alanine/therapeutic use*
;
Alveolar Epithelial Cells/virology*
;
Antibodies, Neutralizing/therapeutic use*
;
COVID-19/virology*
;
Down-Regulation
;
Drug Discovery
;
Human Embryonic Stem Cells/metabolism*
;
Humans
;
Immunity
;
Lipid Metabolism
;
Lung/virology*
;
RNA, Viral/metabolism*
;
SARS-CoV-2/physiology*
;
Virus Replication/drug effects*

Result Analysis
Print
Save
E-mail