1.Phospholipase Cβ1 (PLCB1) promotes gastric adenocarcinoma metastasis by inducing epithelial mesenchymal transition and inhibiting tumour immune infiltration and is associated with poor patient prognosis.
Lingping YUE ; Junfeng CHEN ; Qianqian GAO
Chinese Journal of Cellular and Molecular Immunology 2025;41(5):444-449
Objective To investigate whether PLCB1 expression leads to gastric adenocarcinoma metastasis and poor prognosis, and to preliminarily analyze its mechanism. Methods 122 gastric adenocarcinoma patients and their adjacent non-cancerous tissues were selected, and tissue microarray technology was used to detect the expression levels of PLCB1, epithelial cadherin(E-cadherin), vimentin and CD8+ T cells by immunohistochemistry, and scored by two pathologists. According to the immunohistochemical score of PLCB1, the patients were divided into PLCB1 high expression group (IHC>90) and PLCB1 low expression group (IHC≤90). The clinical pathological characteristics, epithelial mesenchymal transition(EMT)-related proteins and CD8+ T cells expression differences between the two groups were compared. The overall survival of the patients was collected, and COX regression analysis and Kaplan-Meier curve were used to evaluate the relationship between PLCB1 expression level and prognosis. Results PLCB1 was highly expressed in 55 cases of gastric adenocarcinoma tissues, while only 12 cases in adjacent non-cancerous tissues. The tumor invasion depth, lymph node metastasis degree and TNM stage of the PLCB1 high expression group were higher than those of the PLCB1 low expression group. Chi-square test showed that PLCB1 expression level was negatively correlated with E-cadherin (r=-0.339), positively correlated with vimentin (r=0.211), and negatively correlated with CD8+ T cells (r=-0.343). Kaplan-Meier curve analysis showed that the overall survival and disease-free survival of gastric adenocarcinoma patients with high PLCB1 expression were significantly reduced. Multivariate COX regression analysis showed that except for lymph node metastasis, tumor invasion depth, TNM stage, E-cadherin and vimentin were also independent prognostic factors for gastric adenocarcinoma patients. Conclusion PLCB1 is highly expressed in gastric adenocarcinoma, and is closely related to tumor aggressiveness and prognosis. PLCB1 may induce EMT and inhibit CD8+ T cell infiltration to affect gastric adenocarcinoma metastasis and immune response.
Humans
;
Stomach Neoplasms/genetics*
;
Epithelial-Mesenchymal Transition
;
Male
;
Female
;
Middle Aged
;
Prognosis
;
Adenocarcinoma/genetics*
;
Cadherins/metabolism*
;
Aged
;
Adult
;
CD8-Positive T-Lymphocytes/immunology*
;
Vimentin/metabolism*
;
Lymphatic Metastasis
;
Neoplasm Metastasis
2.A Case Report of Lung Adenocarcinoma with EGFR G719A Mutation and LMNA-NTRK1 Fusion.
Shiqi SONG ; Yaxian YANG ; Weiquan LUO ; Yueya LIANG ; Qi LI ; Tongxu ZHUO ; Weibin XIONG ; Jian HUANG
Chinese Journal of Lung Cancer 2025;28(1):75-80
Fusion variations of neurotrophic receptor tyrosine kinase (NTRK) are oncogenic drivers in various solid tumors such as breast cancer, salivary gland carcinoma, infant fibrosarcoma, etc. Gene rearrangements involving NTRK1/2/3 lead to constitutive activation of the tropomyosin receptor kinase (TRK) domain, and the expressed fusion proteins drive tumor growth and survival. NTRK fusions are estimated to occur at a frequency of approximately 0.1% to 1% in non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) mutations are prevalent in NSCLC, but the frequency of EGFR G719A mutation is relatively low (about 2%), and EGFR mutations are typically mutually exclusive with NTRK fusion variants. The study presented the first documented case of lung adenocarcinoma harboring both EGFR G719A mutation and LMNA-NTRK1 fusion. A review of the literature was conducted to elucidate the role of NTRK fusion mutations in NSCLC and their relationship with EGFR mutations, aiming to enhance the understanding of NTRK fusion mutations in NSCLC.
.
Humans
;
Adenocarcinoma/genetics*
;
Adenocarcinoma of Lung
;
ErbB Receptors/genetics*
;
Lamin Type A/genetics*
;
Lung Neoplasms/genetics*
;
Mutation
;
Oncogene Proteins, Fusion/genetics*
;
Receptor, trkA/metabolism*
3.A Case of Endometrial Metastasis in Lung Adenocarcinoma after EGFR-TKIs Treatment Failure and Literature Review.
Fangqian SHEN ; Zuling HU ; Hua YANG ; Puyu LIU ; Yuju BAI ; Jianguo ZHOU ; Hu MA
Chinese Journal of Lung Cancer 2025;28(7):551-557
The incidence and mortality rates of lung cancer remain high, making it the leading cause of cancer-related deaths. In women, the predominant histological subtype is lung adenocarcinoma, commonly associated with epidermal growth factor receptor (EGFR) mutations, and EGFR-tyrosine kinase inhibitors (EGFR-TKIs) can significantly improve patient prognosis. Metastasis of primary lung cancer to the endometrium is extremely rare and is often misdiagnosed as a primary reproductive system tumor, and its occurrence indicates poor prognosis. This article reports a case of an advanced lung adenocarcinoma patient with EGFR mutation, who developed abnormal vaginal bleeding after EGFR-TKIs treatment failure, and biopsy confirmed endometrial metastasis. A review of similar cases is also presented.
.
Humans
;
Female
;
ErbB Receptors/metabolism*
;
Endometrial Neoplasms/genetics*
;
Lung Neoplasms/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Adenocarcinoma of Lung/drug therapy*
;
Treatment Failure
;
Middle Aged
;
Adenocarcinoma/genetics*
4.Role and Mechanism of Hyaluronic Acid-modified Milk Exosomes in Reversing Pemetrexed Resistance in Lung Adenocarcinoma Cells.
Chinese Journal of Lung Cancer 2025;28(9):658-666
BACKGROUND:
Lung cancer currently ranks first globally in both incidence and mortality. Pemetrexed (PMX) serves as a first-line treatment for lung adenocarcinoma (LUAD), but the patients often develop drug resistance during therapy. Milk exosome (mEXO) have the advantages of low immunogenicity, high tissue affinity, and low cost, and mEXO itself has anti-tumor effects. Hyaluronan (HA) naturally bind to CD44, a receptor which is highly expressed in LUAD tissues. This study aims to construct hyaluronan-modified milk exosome (HA-mEXO) and preliminarily investigate their molecular mechanisms for reversing PMX resistance through cellular experiments.
METHODS:
Exosomes were extracted from milk using high-speed centrifugation, and HA-mEXO was constructed. PMX-resistant A549 and PC-9 cell lines were treated with mEXO and HA-mEXO, respectively. CCK-8 assays, colony formation assays, Transwell assays, and flow cytometry were performed to evaluate proliferation, colony formation, migration, invasion, and apoptosis phenotypes in the treated resistant cell lines. Finally, transcriptomic sequencing, analysis, and cellular functional recovery experiments were conducted to investigate the mechanism by which HA-mEXO reverses PMX resistance in LUAD cells.
RESULTS:
The expression of CD44 in A549 and PC-9 LUAD drug-resistant cell lines was significantly higher than that in parental cells, and the uptake rate of HA-mEXO by drug-resistant cell lines was significantly higher than that of mEXO. Compared to the mEXO group, HA-mEXO-treated A549 and PC-9 resistant cells exhibited significantly reduced half maximal inhibitory concentration (IC50) values for PMX, markedly diminished clonogenic, migratory, and invasive capabilities, and a significantly increased proportion of apoptotic cells. Western blot analysis revealed that, compared to parental cells, A549 and PC-9 drug-resistant cells exhibited downregulated ZNF516 expression and upregulated ABCC5 expression. Immunofluorescence analysis revealed that HA-mEXO treatment downregulated ABCC5 expression in A549 and PC-9 drug-resistant cells compared to the PBS group, whereas co-treatment with HA-mEXO and ZNF516 knockdown showed no significant change in ABCC5 expression.
CONCLUSIONS
HA-mEXO carrying ZNF516 suppress ABCC5 expression, thereby enhancing the sensitivity of A549 and PC-9 LAUD drug-resistant cells to PMX.
Humans
;
Hyaluronic Acid/chemistry*
;
Drug Resistance, Neoplasm/drug effects*
;
Exosomes/chemistry*
;
Adenocarcinoma of Lung/genetics*
;
Pemetrexed/pharmacology*
;
Animals
;
Lung Neoplasms/pathology*
;
Milk/chemistry*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Hyaluronan Receptors/metabolism*
5.PM2.5-induced M2 Polarization and IL-1α Secretion by Tumor-associated Macrophages Promotes Lung Adenocarcinoma Progression.
Bomiao QING ; Xiaolan LI ; Qin RAN ; Guoping LI
Chinese Journal of Lung Cancer 2025;28(9):667-679
BACKGROUND:
Lung adenocarcinoma (LUAD) remains one of the leading causes of cancer morbidity and mortality worldwide, and its initiation and progression are closely associated with the tumor immune microenvironment. Increasing evidence suggests that environmental exposure is a critical factor influencing lung cancer development. Among these factors, fine particulate matter (PM2.5), a major component of air pollution, has been strongly linked to elevated lung cancer risk and unfavorable prognosis. However, the underlying immunoregulatory mechanisms by which PM2.5 drives LUAD progression remain poorly understood. Tumor-associated macrophages (TAMs), especially those polarized toward the M2 phenotype, are key components of the tumor microenvironment and play crucial roles in tumor growth, angiogenesis, and immune evasion. This study aims to investigate the effects of PM2.5 exposure on TAMs and to identify the key pro-tumorigenic factors mediating this process.
METHODS:
A mouse orthotopic lung cancer model under PM2.5 exposure was established to assess lung tumor growth and macrophage phenotypic alterations using in vivo imaging and flow cytometry. A subcutaneous tumor model involving co-inoculated macrophages and tumor cells was used to further verify the effects of PM2.5 on the function of TAMs and tumor malignancy. Combining in vitro experiments, flow cytometry, Western blot, reverse transcription quantitative polymerase chain reaction (RT-qPCR), cell counting kit-8 (CCK-8) assay, colony formation assay, and wound healing assay were employed to evaluate the regulatory effects of PM2.5 on the polarization of bone marrow-derived macrophages (BMDMs) as well as tumor cell proliferation, migration, and colony-forming ability. Transcriptome sequencing integrated with TISIDB (Tumor-immune System Interactions Database) and GEPIA (Gene Expression Profiling Interactive Analysis) databases was performed to identify key cytokines for further functional validation.
RESULTS:
In the mouse orthotopic lung cancer model, PM2.5 exposure significantly promoted tumor growth and increased the proportion of M2-type TAMs (P<0.05). Subcutaneous co-inoculation with PM2.5-treated BMDMs markedly enhanced tumor proliferation and elevated the intratumoral M2-type TAMs. PM2.5-pretreated BMDMs exhibited an immunosuppressive programmed cell death ligand 1 (PD-L1)+/arginase 1 (Arg1)+ phenotype, and their conditioned media significantly promoted proliferation, migration, and colony formation of Lewis lung carcinoma cells (LLC) and B16 melanoma cells (B16) (P<0.05). Transcriptome analysis revealed that PM2.5 substantially altered macrophage gene expression, with IL-1α identified as a key upregulated secreted cytokine enriched in immunosuppressive related signaling pathways. Clinical database analyses further indicated that IL-1α expression was positively correlated with macrophage and regulatory T cells (Treg) infiltration in the LUAD immune microenvironment, and that high IL-1α expression was associated with worse overall survival in LUAD patients (HR=1.5, P=0.0053). Western blot, RT-qPCR, and immunofluorescence confirmed that PM2.5 exposure significantly upregulated IL-1α expression and secretion in TAMs.
CONCLUSIONS
PM2.5 exposure facilitates LUAD progression by inducing an immunosuppressive phenotype in macrophages and enhancing the malignant behaviors of tumor cells. Mechanistically, IL-1α may serve as a key pro-tumorigenic cytokine secreted by macrophages under PM2.5 exposure. This study provides new insights into the pathogenesis of PM2.5-associated LUAD and suggests that IL-1α could serve as a potential therapeutic target.
Animals
;
Mice
;
Tumor-Associated Macrophages/immunology*
;
Particulate Matter/toxicity*
;
Adenocarcinoma of Lung/metabolism*
;
Lung Neoplasms/genetics*
;
Humans
;
Disease Progression
;
Tumor Microenvironment/drug effects*
;
Cell Proliferation/drug effects*
;
Cell Line, Tumor
6.Probable Molecular Targeting of Inhibitory Effect of Carvacrol-Loaded Bovine Serum Albumin Nanoparticles on Human Breast Adenocarcinoma Cells.
Pouria KHODAVANDI ; Neda KARAMI ; Alireza KHODAVANDI ; Fahimeh ALIZADEH ; Esmaeel Panahi KOKHDAN ; Ahmad ZAHERI
Chinese journal of integrative medicine 2025;31(4):336-346
OBJECTIVE:
To entrap carvacrol (CAR) in bovine serum albumin nanoparticles (BSANPs) to form CAR-loaded BSANPs (CAR@BSANPs) and to explore the anti-cancer effects in breast adenocarcinoma cells (MCF-7 cells) treated with CAR and CAR@BSANPs.
METHODS:
A desolvation method was used to synthesize BSANPs and CAR@BSANPs. The BSANPs and CAR@BSANPs were characterized by several physicochemical methods, including visual observation, high-resolution field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and high-performance liquid chromatography. MCF-7 cells were used and analyzed after 24 h of exposure to CAR and CAR@BSANPs at half-maximal inhibitory concentration. The anti-proliferative, apoptotic, reactive oxygen species (ROS), and nitric oxide (NO) scavenging activity as well as gene expression analysis were investigated by the cell viability assay, phase-contrast microscopy, 2',7'-dichlorofluorescein-diacetate assay, Griess-Illosvoy colorimetric assay, and quantitative real-time polymerase chain reaction, respectively.
RESULTS:
CAR and CAR@BSANPs showed anti-proliferative, apoptotic, ROS generation, and NO scavenging effects on MCF-7 cells. Expression profile of B-cell lymphoma 2-like 11 (BCL2L11), vascular endothelial growth factor A (VEGFA), hypoxia inducible factor factor-1α (HIF1A), BCL2L11/apoptosis regulator (BAX), and BCL2L11/Bcl2 homologous antagonist/killer 1 (BAK1) ratios revealed downregulated genes; and BAX, BAK1, and CASP8 were upregulated by CAR and CAR@BSANPs treatment. In vitro anticancer assays of the CAR and CAR@BSANPs showed that CAR@BSANPs demonstrated higher therapeutic efficacy in the MCF-7 cells than CAR.
CONCLUSIONS
CAR and CAR@BSANPs affect gene expression and may subsequently reduce the growth and proliferation of the MCF-7 cells. Molecular targeting of regulatory genes of the MCF-7 cells with CAR and CAR@BSANPs may be an effective therapeutic strategy against breast cancer.
Humans
;
Cymenes
;
Nanoparticles/ultrastructure*
;
MCF-7 Cells
;
Breast Neoplasms/genetics*
;
Apoptosis/drug effects*
;
Serum Albumin, Bovine/chemistry*
;
Monoterpenes/therapeutic use*
;
Adenocarcinoma/genetics*
;
Cell Proliferation/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Female
;
Cell Survival/drug effects*
;
Animals
;
Gene Expression Regulation, Neoplastic/drug effects*
;
Nitric Oxide/metabolism*
;
Cattle
7.LncRNA SNHG15 promotes proliferation, migration and invasion of lung adenocarcinoma cells by regulating COX6B1 through sponge adsorption of miR-30b-3p.
Xiuying GONG ; Shunfu HOU ; Miaomiao ZHAO ; Xiaona WANG ; Zhihan ZHANG ; Qinghua LIU ; Chonggao YIN ; Hongli LI
Journal of Southern Medical University 2025;45(7):1498-1505
OBJECTIVES:
To explore the molecular mechanism by which lncRNA SNHG15 regulates proliferation, invasion and migration of lung adenocarcinoma cells.
METHODS:
The lncRNA microarray chip dataset GSE196584 and LncBase were used to predict the lncRNAs that interact with miR-30b-3p, and their association with patient prognosis were investigated using online databases, after which lncRNA nucleolar RNA host gene 15 (SNHG15) was selected for further analysis. The subcellular localization of lncRNA SNHG15 and its expression levels in normal human lung epithelial cells and lung adenocarcinoma cell lines were detected using fluorescence in situ hybridization and qRT-PCR. In cultured A549 cells, the changes in cell proliferation, migration, and invasion following transfection with a SNHG15 knockdown plasmid (sh-SNHG15), a miR-30b-3p inhibitor, or their co-transfection were assessed with EdU, wound healing, and Transwell assays. Bioinformatics analyses were used to predict the regulatory relationship between lncRNA SNHG15 and COX6B1, and the results were verified using Western blotting and rescue experiments in A549 cells transfected with sh-SNHG15, a COX6B1-overexpressing plasmid, or both.
RESULTS:
LncRNA SNHG15 was shown to target miR-30b-3p, and the former was highly expressed in lung adenocarcinoma, and associated with a poor patient prognosis. LncRNA SNHG15 was localized in the cytoplasm and expressed at higher levels in A549 and NCI-H1299 cells than in BEAS-2B cells. In A549 cells, lncRNA SNHG15 knockdown significantly inhibited cell migration, invasion and proliferation, and these changes were reversed by miR-30b-3p inhibitor. A regulatory relationship was found between lncRNA SNHG15 and COX6B1, and their expression levels were positively correlated (r=0.128, P=0.003). MiR-30b-3p knockdown obviously decreased COX6B1 expression in A549 cells, and COX6B1 overexpression rescued the cells from the inhibitory effects of lncRNA-SNHG15 knockdown.
CONCLUSIONS
LncRNA SNHG15 may compete with COX6B1 to bind miR-30b-3p through a ceRNA mechanism to affect proliferation, migration, and invasion of lung adenocarcinoma cells.
Humans
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/genetics*
;
Cell Proliferation
;
Cell Movement
;
Lung Neoplasms/genetics*
;
Adenocarcinoma of Lung
;
Neoplasm Invasiveness
;
A549 Cells
;
Adenocarcinoma/genetics*
;
Gene Expression Regulation, Neoplastic
;
Cell Line, Tumor
8.PDZ-binding kinase as a prognostic biomarker for pancreatic cancer: a pan-cancer analysis and validation in pancreatic adenocarcinoma cells.
Jinguo WANG ; Yang MA ; Zhaoxin LI ; Lifei HE ; Yingze HUANG ; Xiaoming FAN
Journal of Southern Medical University 2025;45(10):2210-2222
OBJECTIVES:
To investigate the prognostic significance of PDZ-binding kinase (PBK) in pan-cancer and its potential as a therapeutic target for pancreatic cancer.
METHODS:
PBK expression levels were investigated in 33 cancer types based on data from TCGA, GEO and CPTAC databases. RT-PCR and Western blotting were employed to examine PBK expression in clinical pancreatic cancer specimens and cell lines. The diagnostic and prognostic value of PBK in pancreatic cancer was evaluated using survival analysis, Cox regression analysis, ROC curve analysis, and clinical correlation studies. Gene enrichment and immune correlation analyses were conducted to explore the potential role of PBK in tumor microenvironment, and its correlation with drug sensitivity was investigated using GDSC and CTRP datasets. In pancreatic cancer BXPC-3 cells, the effects of lentivirus-mediated PBK knockdown on cell proliferation, migration, and invasion were examined using CCK-8, colony formation, and Transwell assays. The interaction between PBK and non-SMC condensin II complex subunit G2 (NCAPG2) was analyzed using co-immunoprecipitation and Western blotting.
RESULTS:
PBK was overexpressed in multiple cancer types, including pancreatic cancer. A high PBK expression was associated with a poor prognosis of the patients and correlated with immune infiltration and alterations in the tumor microenvironment. Elevated PBK expression was positively correlated with the sensitivity to MEK inhibitors (Trametinib) and EGFR inhibitors (Afatinib) but negatively with the sensitivity to Bcl-2 inhibitors (TW37) and niclosamide. In BXPC-3 cells, PBK knockdown significantly suppressed NCAPG2 expression and inhibited cell proliferation, migration, and invasion. Co-immunoprecipitation confirmed a direct binding between PBK and NCAPG2.
CONCLUSIONS
PBK is a key regulator of pancreatic cancer and interacts with NCAPG2 to promote tumor progression, suggesting its value as a potential biomarker and therapeutic target for pancreatic cancer.
Humans
;
Pancreatic Neoplasms/genetics*
;
Prognosis
;
Biomarkers, Tumor/genetics*
;
Cell Line, Tumor
;
Cell Proliferation
;
Adenocarcinoma/metabolism*
;
Tumor Microenvironment
;
Cell Movement
;
Mitogen-Activated Protein Kinase Kinases
9.Astragalus polysaccharides induces ferroptosis in ovarian adenocarcinoma cells through Nrf2/SLC7A11/GPX4 signaling pathway.
Yong-Gen ZHANG ; Xiao-Fei YAN ; Feng LIU ; Wen-Zhe HAO ; Yue CAI ; Ying LIU ; Lan-Lin LIU ; Xue-Jun LI
China Journal of Chinese Materia Medica 2024;49(23):6459-6467
This study primarily investigated the mechanism of Astragalus polysaccharides(APS), a Chinese medicinal material, in regulating the Nrf2/SLC7A11/GPX4 signaling pathway to induce ferroptosis in ovarian cancer cells(Caov-3 and SKOV3 cells). Caov-3 and SKOV3 cells were divided into control(Vehicle) group, APS group, glutathione peroxidase 4 inhibitor(RSL3) group, and APS+RSL3 group. After 48 h of intervention, the activity and morphology of the cells in each group were observed. The cell counting kit-8(CCK-8) method was used to determine the half-maximal inhibitory concentration(IC_(50)), while colony formation and EdU assays were conducted to assess cell proliferation. Biochemical reagents were used to detect lipid reactive oxygen species(L-ROS), malondialdehyde(MDA), divalent iron ions(Fe~(2+)), and glutathione(GSH) in Caov-3 cells. Transmission electron microscopy was employed to observe the morphological changes of mitochondria in Caov-3 cells. Bioinformatics analysis were used to screen potential target genes of APS in ovarian cancer cells. Western blot and RT-PCR were applied to measure the protein and mRNA expression of Nrf2, SLC7A11, and GPX4. The results revealed that APS effectively inhibited the activity and proliferation of ovarian cancer cells, significantly increased the expression levels of L-ROS, MDA, and Fe~(2+)(P<0.001), and significantly reduced the expression level of GSH(P<0.001). Under electron microscopy, the mitochondria of Caov-3 cells appeared significantly smaller, with a marked increase in the density of the bilayer membrane, disappearance of mitochondrial cristae, and rupture of the outer mitochondrial membrane. These effects were more pronounced when APS was combined with RSL3. Bioinformatics screening identified Nrf2, SLC7A11, and GPX4 as potential target genes for APS in ovarian cancer cells. APS was shown to reduce the protein and mRNA expression of Nrf2, SLC7A11, and GPX4(P<0.01), with the APS+RSL3 showing even more significant effects(P<0.001). In conclusion, APS can induce ferroptosis in ovarian cancer cells, and its mechanism may be related to the regulation of the Nrf2/SLC7A11/GPX4 signaling pathway, providing an experimental basis for the use of APS injections in the treatment of ovarian cancer.
Humans
;
Ferroptosis/drug effects*
;
Female
;
NF-E2-Related Factor 2/genetics*
;
Ovarian Neoplasms/physiopathology*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Signal Transduction/drug effects*
;
Cell Line, Tumor
;
Amino Acid Transport System y+/genetics*
;
Polysaccharides/pharmacology*
;
Astragalus Plant/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Adenocarcinoma/physiopathology*
;
Cell Proliferation/drug effects*
;
Glutathione Peroxidase/genetics*
;
Reactive Oxygen Species/metabolism*
10.Crizotinib Treatment for Lorlatinib-resistant MET-amplified EML4-ALK-fusion Positive Advanced Lung Adenocarcinoma: A Case Report.
Xinyi WANG ; Ning MU ; Mei LIU ; Yue XU ; Shengnan WU ; Huan LV ; Chunhua MA
Chinese Journal of Lung Cancer 2024;27(12):956-960
Lung cancer is a major cause of cancer-related mortality worldwide. Among patients with non-small cell lung cancer (NSCLC), approximately 3%-7% harbor anaplastic lymphoma kinase (ALK) gene fusions. In recent years, multiple tyrosine kinase inhibitors (TKIs) have significantly improved the survival of patients with metastatic ALK-positive NSCLC. However, disease progression due to resistance remains a challenge. This article retrospectively analyzes a case of advanced lung adenocarcinoma with the echinoderm microtubule associated protein like 4 (EML4)-ALK fusion variant 3 (V3). The patient developed resistance to Lorlatinib treatment accompanied by mesenchymal-epithelial transition factor (MET) amplification. Effective tumor control was achieved with the combined use of Crizotinib and Lorlatinib, providing a valuable reference for further exploration of treatment strategies following resistance to ALK-TKIs in clinical practice.
.
Humans
;
Adenocarcinoma/genetics*
;
Adenocarcinoma of Lung/genetics*
;
Aminopyridines/therapeutic use*
;
Crizotinib/therapeutic use*
;
Drug Resistance, Neoplasm/drug effects*
;
Lactams/therapeutic use*
;
Lung Neoplasms/genetics*
;
Oncogene Proteins, Fusion/metabolism*
;
Protein Kinase Inhibitors/therapeutic use*
;
Proto-Oncogene Proteins c-met/metabolism*
;
Pyrazoles/therapeutic use*

Result Analysis
Print
Save
E-mail