1.Mechanism of action of ginsenoside Rg_2 on diabetic retinopathy and angiogenesis based on YAP/TLRs pathway.
Zhuo-Rong LIU ; Yong-Li SONG ; Shang-Qiu NING ; Yue-Ying YUAN ; Yu-Ting ZHANG ; Gai-Mei HAO ; Jing HAN
China Journal of Chinese Materia Medica 2025;50(6):1659-1669
Ginsenoside Rg_2(GRg2) is a triterpenoid compound found in Panax notoginseng. This study explored its effects and mechanisms on diabetic retinopathy and angiogenesis. The study employed endothelial cell models induced by glucose or vascular endothelial growth factor(VEGF), the chorioallantoic membrane(CAM) model, the oxygen-induced retinopathy(OIR) mouse model, and the db/db mouse model to evaluate the therapeutic effects of GRg2 on diabetic retinopathy and angiogenesis. Transwell assays and endothelial tube formation experiments were conducted to assess cell migration and tube formation, while vascular area measurements were applied to detect angiogenesis. The impact of GRg2 on the retinal structure and function of db/db mice was evaluated through retinal thickness and electroretinogram(ERG) analyses. The study investigated the mechanisms of GRg2 by analyzing the activation of Yes-associated protein(YAP) and Toll-like receptors(TLRs) pathways. The results indicated that GRg2 significantly reduced cell migration numbers and tube formation lengths in vitro. In the CAM model, GRg2 exhibited a dose-dependent decrease in the vascular area ratio. In the OIR model, GRg2 notably decreased the avascular and neovascular areas, ameliorating retinal structural disarray. In the db/db mouse model, GRg2 increased the total retinal thickness and enhanced the amplitudes of the a-wave, b-wave, and oscillatory potentials(OPs) in the ERG, improving retinal structural disarray. Transcriptomic analysis revealed that the TLR signaling pathway was significantly down-regulated following YAP knockdown, with PCR results consistent with the transcriptome sequencing findings. Concurrently, GRg2 downregulated the expression of Toll-like receptor 4(TLR4), TNF receptor-associated factor 6(TRAF6), and nuclear factor-kappaB(NF-κB) proteins in high-glucose-induced endothelial cells. Collectively, GRg2 inhibits cell migration and tube formation and significantly reduces angiogenesis in CAM and OIR models, improving retinal structure and function in db/db mice, with its pharmacological mechanism likely involving the down-regulation of YAP expression.
Animals
;
Ginsenosides/pharmacology*
;
Diabetic Retinopathy/physiopathology*
;
Mice
;
YAP-Signaling Proteins
;
Humans
;
Male
;
Signal Transduction/drug effects*
;
Cell Movement/drug effects*
;
Adaptor Proteins, Signal Transducing/genetics*
;
Mice, Inbred C57BL
;
Neovascularization, Pathologic/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Panax notoginseng/chemistry*
;
Endothelial Cells/metabolism*
;
Transcription Factors/genetics*
;
Angiogenesis
2.Effects of total extract of Anthriscus sylvestris on immune inflammation and thrombosis in rats with pulmonary arterial hypertension based on TGF-β1/Smad3 signaling pathway.
Ya-Juan ZHENG ; Pei-Pei YUAN ; Zhen-Kai ZHANG ; Yan-Ling LIU ; Sai-Fei LI ; Yuan RUAN ; Yi CHEN ; Yang FU ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(9):2472-2483
This study aimed to explore the effects and mechanisms of total extracts from Anthriscus sylvestris on pulmonary hypertension in rats. Sixty male SD rats were divided into normal(NC) group, model(M) group, positive drug sildenafil(Y) group, low-dose A. sylvestris(ES-L) group, medium-dose A. sylvestris(ES-M) group, and high-dose A. sylvestris(ES-H) group. On day 1, rats were intraperitoneally injected with monocrotaline(60 mg·kg~(-1)) to induce pulmonary hypertension, and the rat model was established on day 28. From days 15 to 28, intragastric administration of the respective treatments was performed. After modeling and treatment, small animal echocardiography was used to detect the right heart function of the rats. Arterial blood gas was measured using a blood gas analyzer. Hematoxylin and eosin(HE) staining and Masson staining were performed to observe cardiopulmonary pathological damage. Flow cytometry was used to detect apoptosis in the lung and myocardial tissues and reactive oxygen species(ROS) levels. Western blot was applied to detect the expression levels of transforming growth factor-β1(TGF-β1), phosphorylated mothers against decapentaplegic homolog 3(p-Smad3), Smad3, tissue plasminogen activator(t-PA), and plasminogen activator inhibitor-1(PAI-1) in lung tissue. A blood routine analyzer was used to measure inflammatory immune cell levels in the blood. Enzyme-linked immunosorbent assay(ELISA) was used to detect the expression levels of P-selectin and thromboxane A2(TXA2) in plasma. The results showed that, compared with the NC group, right heart hypertrophy index, right ventricular free wall thickness, right heart internal diameter, partial carbon dioxide pressure(PaCO_2), apoptosis in cardiopulmonary tissue, and ROS levels were significantly increased in the M group. In contrast, the ratio of pulmonary blood flow acceleration time(PAT)/ejection time(PET), right cardiac output, change rate of right ventricular systolic area, systolic displacement of the tricuspid ring, oxygen partial pressure(PaO_2), and blood oxygen saturation(SaO_2) were significantly decreased in the M group. After administration of the total extract of A. sylvestris, right heart function and blood gas levels were significantly improved, while apoptosis in cardiopulmonary tissue and ROS levels significantly decreased. Further testing revealed that the total extract of A. sylvestris significantly decreased the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and PAI-1 proteins in lung tissue, while increasing the expression of t-PA. Additionally, the extract reduced the levels of inflammatory cells such as leukocytes, lymphocytes, granulocytes, and monocytes in the blood, as well as the levels of P-selectin and TXA2 in plasma. Metabolomics results showed that the total extract of A. sylvestris significantly affected metabolic pathways, including arginine biosynthesis, tyrosine metabolism, and taurine and hypotaurine metabolism. In conclusion, the total extract of A. sylvestris may exert an anti-pulmonary hypertension effect by inhibiting the TGF-β1/Smad3 signaling pathway, thereby alleviating immune-inflammatory responses and thrombosis.
Animals
;
Male
;
Smad3 Protein/metabolism*
;
Transforming Growth Factor beta1/metabolism*
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction/drug effects*
;
Hypertension, Pulmonary/genetics*
;
Thrombosis/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Apoptosis/drug effects*
3.Protective effect of ethyl syringate against ulcerative colitis based on JAK2/STAT3 pathway.
Meng-di LIANG ; Yue-Run LIANG ; Jin CHENG ; Ya-Ping YANG ; Xuan XIA ; Wen-Zhe YANG ; Jie-Jie HAO
China Journal of Chinese Materia Medica 2025;50(10):2778-2786
To study the therapeutic effect and mechanisms of ethyl syringate(MD) on ulcerative colitis(UC), the MTT assay was used to detect the proliferation inhibition of RAW264.7 cells and HT-29 cells by different concentrations of MD(50, 100, 200, 400 μmol·L~(-1)). UC cell models were constructed by inducing RAW264.7 cells and HT-29 cells with lipopolysaccharide(LPS) and tumor necrosis factor-α(TNF-α). An animal model was established by inducing mice with 2.5% dextran sulfate sodium(DSS) to verify the therapeutic effect of MD on UC. A control group, a model group(LPS or TNF-α), and groups treated with different concentrations of MD(50, 100, 200, 400 μmol·L~(-1)) were set up in this study. Nitric oxide(NO) levels were measured using a NO detection kit. Intracellular reactive oxygen species(ROS) levels were assessed using a laser confocal microscope and ROS kit. Enzyme-linked immunosorbent assay(ELISA) was used to detect changes in the levels of interleukin-6(IL-6), TNF-α, interferon-γ(INF-γ), interleukin-10(IL-10), and myeloperoxidase(MPO) in cells and animal tissues. Western blot was used to detect the expression levels of phosphorylated Janus kinase 2(p-JAK2), Janus kinase 2(JAK2), phosphorylated signal transducer and activator of transcription 3(p-STAT3), signal transducer and activator of transcription 3(STAT3), zonula occludens-1(ZO-1), occludin, and claudin-1 in cells and animal tissues. The results showed that MD can improve the inflammatory response by inhibiting the production of NO and ROS and regulating the expression of inflammatory factors. It significantly reduced the disease activity index(DAI) in mice, improved the shortening of the colon, and repaired intestinal epithelial damage by inhibiting the activation of the JAK2/STAT3 pathway, thereby exerting anti-UC activity.
Animals
;
Colitis, Ulcerative/chemically induced*
;
Janus Kinase 2/genetics*
;
STAT3 Transcription Factor/genetics*
;
Mice
;
Humans
;
Signal Transduction/drug effects*
;
Male
;
RAW 264.7 Cells
;
Reactive Oxygen Species/metabolism*
;
Nitric Oxide/metabolism*
;
HT29 Cells
;
Salicylates/administration & dosage*
;
Protective Agents/administration & dosage*
4.Buyang Huanwu Decoction promotes angiogenesis after oxygen-glucose deprivation/reoxygenation injury of bEnd.3 cells by regulating YAP1/HIF-1α signaling pathway via caveolin-1.
Bo-Wei CHEN ; Yin OUYANG ; Fan-Zuo ZENG ; Ying-Fei LIU ; Feng-Ming TIAN ; Ya-Qian XU ; Jian YI ; Bai-Yan LIU
China Journal of Chinese Materia Medica 2025;50(14):3847-3856
This study aims to explore the mechanism of Buyang Huanwu Decoction(BHD) in promoting angiogenesis after oxygen-glucose deprivation/reoxygenation(OGD/R) of mouse brain microvascular endothelial cell line(brain-derived Endothelial cells.3, bEnd.3) based on the caveolin-1(Cav1)/Yes-associated protein 1(YAP1)/hypoxia-inducible factor-1α(HIF-1α) signaling pathway. Ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to analyze the blood components of BHD. The cell counting kit-8(CCK-8) method was used to detect the optimal intervention concentration of drug-containing serum of BHD after OGD/R injury of bEnd.3. The lentiviral transfection method was used to construct a Cav1 silent stable strain, and Western blot and polymerase chain reaction(PCR) methods were used to verify the silencing efficiency. The control bEnd.3 cells were divided into a normal group(sh-NC control group), an OGD/R model + blank serum group(sh-NC OGD/R group), and an OGD/R model + drug-containing serum group(sh-NC BHD group). Cav1 silent cells were divided into an OGD/R model + blank serum group(sh-Cav1 OGD/R group) and an OGD/R model + drug-containing serum group(sh-Cav1 BHD group). The cell survival rate was detected by the CCK-8 method. The cell migration ability was detected by a cell migration assay. The lumen formation ability was detected by an angiogenesis assay. The apoptosis rate was detected by flow cytometry, and the expression of YAP1/HIF-1α signaling pathway-related proteins in each group was detected by Western blot. Finally, co-immunoprecipitation was used to verify the interaction between YAP1 and HIF-1α. The results showed astragaloside Ⅳ, formononetin, ferulic acid, and albiflorin in BHD can all enter the blood. The drug-containing serum of BHD at a mass fraction of 10% may be the optimal intervention concentration for OGD/R-induced injury of bEnd.3 cells. Compared with the sh-NC control group, the sh-NC OGD/R group showed significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, significantly increased cell apoptotic rate, significantly lowered phosphorylation level of YAP1 at S127 site, and significantly elevated nuclear displacement level of YAP1 and protein expression of HIF-1α, vascular endothelial growth factor(VEGF), and vascular endothelial growth factor receptor 2(VEGFR2). Compared with the same type of OGD/R group, the sh-NC BHD group and sh-Cav1 BHD group had significantly increased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly decreased cell apoptotic rate, a further decreased phosphorylation level of YAP1 at S127 site, and significantly increased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. Compared with the sh-NC OGD/R group, the sh-Cav1 OGD/R group exhibited significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly increased cell apoptotic rate, a significantly increased phosphorylation level of YAP1 at S127 site, and significantly decreased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. Compared with the sh-NC BHD group, the sh-Cav1 BHD group showed significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly increased cell apoptotic rate, a significantly increased phosphorylation level of YAP1 at the S127 site, and significantly decreased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. YAP1 protein was present in the protein complex precipitated by the HIF-1α antibody, and HIF-1α protein was also present in the protein complex precipitated by the YAP1 antibody. The results confirmed that the drug-containing serum of BHD can increase the activity of YAP1/HIF-1α pathway in bEnd.3 cells damaged by OGD/R through Cav1 and promote angiogenesis in vitro.
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Signal Transduction/drug effects*
;
Glucose/metabolism*
;
Caveolin 1/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
YAP-Signaling Proteins
;
Oxygen/metabolism*
;
Endothelial Cells/metabolism*
;
Cell Line
;
Adaptor Proteins, Signal Transducing/genetics*
;
Neovascularization, Physiologic/drug effects*
;
Cell Hypoxia/drug effects*
;
Angiogenesis
5.Mechanism of Yiguanjian in regulating Th17/Treg balance for treating dry eye in rats.
Xiao-Long ZHANG ; Yuan ZHONG ; Qing-Hua PENG ; Jun PENG
China Journal of Chinese Materia Medica 2025;50(16):4668-4678
This study investigated the therapeutic effects of Yiguanjian on dry eye in rats and its mechanisms involving the T helper cell 17(Th17)/regulatory T cell(Treg) balance. The rat model of dry eye was established by administrating 0.2% benzalkonium chloride solution in eye drops. After successful modeling, the rats were treated with Yiguanjian for 4 consecutive weeks. The Schirmer test was carried out to assess the lacrimal gland function, corneal fluorescence staining to detect corneal injury, hematoxylin-eosin staining to observe corneal histopathology, enzyme-linked immunosorbent assay to measure serum levels of interleukin(IL)-6, IL-8, IL-17A, IL-21, and tumor necrosis factor-α(TNF-α), RT-qPCR to analyze mRNA levels of retinoic acid receptor-related orphan receptor gamma t(RORγt) and forkhead box protein p3(Foxp3) in the corneal tissue, immunofluorescence double staining to evaluate RORγt and Foxp3 expression in the lacrimal gland tissue, and Western blot to quantify the protein levels of signal transducer and activator of transcription 3(STAT3), phosphorylated STAT3(p-STAT3), Janus kinase 2(Jak2), phosphorylated Jak2(p-Jak2), RORγt, and Foxp3 in the corneal tissue. The results demonstrated that Yiguanjian increased tear secretion(P<0.01), alleviated corneal damage and pathological changes, and lowered the serum levels of IL-6, IL-8, IL-17A, IL-21, and TNF-α(P<0.05) in model rats. Additionally, Yiguanjian decreased the ratio of RORγt to Foxp3 in the corneal and lacrimal gland tissue(P<0.01), downregulated the protein levels of STAT3, Jak2, and RORγt(P<0.05), upregulated the protein level of Foxp3(P<0.05), and inhibited phosphorylation of STAT3 and Jak2(P<0.01). These findings indicate that Yiguanjian ameliorates ocular surface dysfunction in dry eye rats by restoring Th17/Treg balance in the corneal and lacrimal gland tissue and suppressing systemic inflammatory cytokine release, thus mitigating ocular surface inflammation.
Animals
;
Rats
;
T-Lymphocytes, Regulatory/immunology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Th17 Cells/immunology*
;
Male
;
Rats, Sprague-Dawley
;
Dry Eye Syndromes/genetics*
;
Nuclear Receptor Subfamily 1, Group F, Member 3/immunology*
;
Lacrimal Apparatus/immunology*
;
Humans
;
STAT3 Transcription Factor/immunology*
6.Analgesic effect of "Zhibian" (BL54)-toward-"Shuidao" (ST28) needling technique of acupuncture on primary dysmenorrhea based on NOD1/RIP2/NF-κB signaling pathway in the rats.
Xu JIN ; Yanlin ZHANG ; Boya CHANG ; Jia REN ; Jianheng HAO ; Yuxia CAO ; Haijun WANG ; Laixi JI
Chinese Acupuncture & Moxibustion 2025;45(2):209-216
OBJECTIVE:
To observe the effect of "Zhibian" (BL54)-toward-"Shuidao" (ST28) needling technique on the relative protein expression of the signaling pathway of nucleotide-binding oligomerization domain-containing protein 1 (NOD1)/ receptor-interacting protein 2 (RIP2)/nuclear factor kappa-B (NF-κB) and the expression of proinflammatory cytokines in the rats with primary dysmenorrhea (PD), so as to explore the underlying mechanism of this acupuncture technique for pain alleviation in PD.
METHODS:
Thirty female SD rats of SPF grade with normal estrous cycle were randomized into a blank group, a model group and an acupuncture group, 10 rats in each one. Using the intraperitoneal injection with estradiol benzoate combined with oxytocin, PD model was prepared in the model group and the acupuncture group. In the acupuncture group, during model preparation, the intervention with "Zhibian" (BL54)-toward-"Shuidao" (ST28) needling technique was delivered simultaneously, 20 min each time, once daily for consecutive 10 days. On day 11, within 30 min after the intraperitoneal injection with oxytocin, the writhing reaction (latency, frequency and score) was recorded; the morphology of uterine tissue was observed with HE staining, the contents of prostaglandin E2 (PGE2), prostaglandin F2α (PGF2α), interleukin (IL)-1β, IL-18, cyclooxygenase-2 (COX-2), and tumor necrosis factor-α(TNF-α) in the serum were detected using ELISA method; the relative protein expression of NOD1, RIP2, NF-κB p65, phosphorylation-NF-κB p65 (p-NF-κB p65) was detected in the uterine tissue using Western blot method; and the mRNA expression of NOD1, RIP2 and NF-κB p65 was detected with the quantitative real-time PCR employed.
RESULTS:
Compared with the blank group, in the model group, the writhing latency was prolonged (P<0.01), the writhing frequency and score increased (P<0.01) in the rats; the endometrial epithelial cells showed massive degeneration and necrosis, with severe endometrial edema and widespread shedding, combined with neutrophil infiltration; the serum PGE2 content was dropped (P<0.01), while those of PGF2α, IL-1β, IL-18, COX-2, and TNF-α elevated (P<0.01); the protein expression of NOD1, RIP2, NF-κB p65 and p-NF-κB p65, and the mRNA expression of NOD1, RIP2 and NF-κB p65 in uterine tissue increased (P<0.01). In comparison with the model group, in the acupuncture group, the writhing latency was prolonged (P<0.01), the writhing frequency and score were reduced (P<0.01) in the rats; there was less degeneration and necrosis of endometrial epithelial cells, with mild endometrial edema and very little neutrophil infiltration; the serum PGE2 content increased (P<0.01), while those of PGF2α, IL-1β, IL-18, COX-2, and TNF-α decreased (P<0.01); the protein expression of NOD1, RIP2, NF-κB p65 and p-NF-κB p65 and the mRNA expression of NOD1, RIP2 and NF-κB p65 in uterine tissue were dropped (P<0.05, P<0.01).
CONCLUSION
"Zhibian" (BL54)-toward-"Shuidao" (ST28) needling technique can alleviate the pain symptom of PD rats, and its action mechanism may be related to inhibiting the active expression of NOD1/RIP2/NF-κB signaling pathway in the uterine tissue, thereby reducing the inflammatory response.
Animals
;
Female
;
Rats, Sprague-Dawley
;
Rats
;
Signal Transduction
;
Dysmenorrhea/metabolism*
;
NF-kappa B/metabolism*
;
Acupuncture Points
;
Humans
;
Acupuncture Analgesia
;
Nod1 Signaling Adaptor Protein/metabolism*
;
Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism*
;
Acupuncture Therapy
7.Inhibition of interferon regulatory factor 4 orchestrates T cell dysfunction, extending mouse cardiac allograft survival.
Wenjia YUAN ; Hedong ZHANG ; Longkai PENG ; Chao CHEN ; Chen FENG ; Zhouqi TANG ; Pengcheng CUI ; Yaguang LI ; Tengfang LI ; Xia QIU ; Yan CUI ; Yinqi ZENG ; Jiadi LUO ; Xubiao XIE ; Yong GUO ; Xin JIANG ; Helong DAI
Chinese Medical Journal 2025;138(10):1202-1212
BACKGROUND:
T cell dysfunction, which includes exhaustion, anergy, and senescence, is a distinct T cell differentiation state that occurs after antigen exposure. Although T cell dysfunction has been a cornerstone of cancer immunotherapy, its potential in transplant research, while not yet as extensively explored, is attracting growing interest. Interferon regulatory factor 4 (IRF4) has been shown to play a pivotal role in inducing T cell dysfunction.
METHODS:
A novel ultra-low-dose combination of Trametinib and Rapamycin, targeting IRF4 inhibition, was employed to investigate T cell proliferation, apoptosis, cytokine secretion, expression of T-cell dysfunction-associated molecules, effects of mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling pathways, and allograft survival in both in vitro and BALB/c to C57BL/6 mouse cardiac transplantation models.
RESULTS:
In vitro , blockade of IRF4 in T cells effectively inhibited T cell proliferation, increased apoptosis, and significantly upregulated the expression of programmed cell death protein 1 (PD-1), Helios, CD160, and cytotoxic T lymphocyte-associated antigen (CTLA-4), markers of T cell dysfunction. Furthermore, it suppressed the secretion of pro-inflammatory cytokines interferon (IFN)-γ and interleukin (IL)-17. Combining ultra-low-dose Trametinib (0.1 mg·kg -1 ·day -1 ) and Rapamycin (0.1 mg·kg -1 ·day -1 ) demonstrably extended graft survival, with 4 out of 5 mice exceeding 100 days post-transplantation. Moreover, analysis of grafts at day 7 confirmed sustained IFN regulatory factor 4 (IRF4) inhibition, enhanced PD-1 expression, and suppressed IFN-γ secretion, reinforcing the in vivo efficacy of this IRF4-targeting approach. The combination of Trametinib and Rapamycin synergistically inhibited the MAPK and mTOR signaling network, leading to a more pronounced suppression of IRF4 expression.
CONCLUSIONS
Targeting IRF4, a key regulator of T cell dysfunction, presents a promising avenue for inducing transplant immune tolerance. In this study, we demonstrate that a novel ultra-low-dose combination of Trametinib and Rapamycin synergistically suppresses the MAPK and mTOR signaling network, leading to profound IRF4 inhibition, promoting allograft acceptance, and offering a potential new therapeutic strategy for improved transplant outcomes. However, further research is necessary to elucidate the underlying pharmacological mechanisms and facilitate translation to clinical practice.
Animals
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Interferon Regulatory Factors/metabolism*
;
Heart Transplantation/methods*
;
T-Lymphocytes/immunology*
;
Sirolimus/therapeutic use*
;
Pyridones/therapeutic use*
;
Graft Survival/drug effects*
;
Pyrimidinones/therapeutic use*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Male
;
Signal Transduction/drug effects*
8.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*
9.Eccentric treadmill exercise promotes adaptive hypertrophy of gastrocnemius in rats.
Zhi-Qiang DAI ; Yu KE ; Yan ZHAO ; Ying YANG ; Hui-Wen WU ; Hua-Yu SHANG ; Zhi XIA
Acta Physiologica Sinica 2025;77(3):449-464
The present study aimed to investigate the effects of eccentric treadmill exercise on adaptive hypertrophy of skeletal muscle in rats. Thirty-two 3-month-old Sprague Dawley (SD) rats were selected and randomly assigned to one of the four groups based on their body weights: 2-week quiet control group (2C), 2-week downhill running exercise group (2E), 4-week quiet control group (4C), and 4-week downhill running exercise group (4E). The downhill running protocol for rats in the exercise groups involved slope of -16°, running speed of 16 m/min, training duration of 90 min, and 5 training sessions per week. Twenty-four hours after the final session of training, all the four groups of rats underwent an exhaustion treadmill exercise. After resting for 48 h, all the rats were euthanized and their gastrocnemius muscles were harvested for analysis. HE staining was used to measure the cross-sectional area (CSA) and diameter of muscle fibers. Transmission electron microscope was used to observe the ultrastructural changes in muscle fibers. Purithromycin surface labeling translation method was used to measure protein synthesis rate. Immunofluorescence double labeling was used to detect the colocalization levels of lysosomal-associated membrane protein 2 (Lamp2)-leucyl-tRNA synthetase (LARS) and Lamp2-mammalian target of rapamycin (mTOR). Western blot was used to measure the protein expression levels of myosin heavy chain (MHC) IIb and LARS, as well as the phosphorylation levels of mTOR, p70 ribosomal protein S6 kinase (p70S6K), and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). The results showed that, compared with the 2C group rats, the 2E group rats showed significant increases in wet weight of gastrocnemius muscle, wet weight/body weight ratio, running distance, running time, pre- and post-exercise blood lactate levels, myofibrillar protein content, colocalization levels of Lamp2-LARS and Lamp2-mTOR, and LARS protein expression. Besides these above changes, compared with the 4C group, the 4E group further exhibited significantly increased fiber CSA, fiber diameter, protein synthesis rate, and phosphorylation levels of mTOR, p70S6K, and 4E-BP1. Compared with the quiet control groups, the exercise groups exhibited ultrastructural damage of rat gastrocnemius muscle, which was more pronounced in the 4E group. These findings suggest that eccentric treadmill exercise may promote mTOR translocation to lysosomal membrane, activating mTOR signaling via up-regulating LARS expression. This, in turn, increases protein synthesis rate through the mTOR-p70S6K-4E-BP1 signaling pathway, promoting protein deposition and inducing adaptive skeletal muscle hypertrophy. Although the ultrastructural changes of skeletal muscle are more pronounced, the relatively long training cycles during short-term exercise periods have a more significant effect on promoting gastrocnemius muscle protein synthesis and adaptive hypertrophy.
Animals
;
Rats, Sprague-Dawley
;
Physical Conditioning, Animal/physiology*
;
Rats
;
Muscle, Skeletal/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Male
;
Hypertrophy
;
Adaptation, Physiological/physiology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Ribosomal Protein S6 Kinases, 70-kDa/metabolism*
;
Intracellular Signaling Peptides and Proteins
10.Effect and mechanism of alkaloids from Portulacae Herba on ulcerative colitis in mice based on TLR4/MyD88/NF-κB signaling pathway.
Jia-Hui ZHENG ; Ying-Ying SONG ; Tian-Ci ZHANG ; Wen-Ting WANG ; Zhi-Ping YANG ; Jin-Xia AI
China Journal of Chinese Materia Medica 2025;50(4):874-881
This study investigated the functions and regulatory mechanism of Portulacae Herba and its chemical components on the Toll-like receptor 4(TLR4)/myeloid differentiation primary response 88(MyD88)/nuclear factor kappa B(NF-κB) inflammatory signaling pathway in the colon tissue of mice with dextran sodium sulfate(DSS)-induced ulcerative colitis(UC). A total of 35 mice were randomly divided into groups, including a blank group, a model group, a mesalazine group(0. 5 g·kg~(-1)), and low, medium,and high dose alkaloids from Portulacae Herba groups(9, 18, 36 mg·kg~(-1)), and a combination treatment group, with 5 mice in each group. The blank group was given purified water, while the other groups were continuously given a 3% DSS solution for 7 days to induce the UC model. From day 8 onwards, the treatment group received oral gavage according to the prescribed doses for 14 days. The overall condition, body weight, stool characteristics, and presence of blood in the stool were recorded daily. After the experiment, the disease activity index(DAI) was assessed for each group, and colon length was measured. Histopathological changes in colon tissue were examined using hematoxylin-eosin(HE) staining. The levels of pro-inflammatory cytokines, tumor necrosis factor-α(TNF-α),and interleukin-1β( IL-1β) in serum were measured by enzyme-linked immunosorbent assay( ELISA). The protein and m RNA expression of TLR4, MyD88, and NF-κB in colon tissue were measured using Western blot and quantitative real-time PCR(qPCR).Compared to the blank group, the model group showed a significant decrease in body weight, a notable increase in DAI scores, a significant shortening of colon length, and evident histopathological damage. The levels of inflammatory cytokines TNF-α and IL-1β in the serum were significantly elevated, and the protein and m RNA expression of TLR4, MyD88, and NF-κB in colon tissue were significantly up-regulated. In contrast, the alkaloids from Portulacae Herba treatment groups significantly improved symptoms and reduced body weight loss in mice, decreased DAI scores, alleviated colon shortening, lowered serum levels of TNF-α and IL-1β,significantly down-regulated the expression levels of TLR4, MyD88, and NF-κB proteins and genes in colon tissue, as well as reduced histopathological damage. Therefore, the study suggests that alkaloids from Portulacae Herba can alleviate intestinal inflammation damage in DSS-induced UC mice, with its mechanism involving the TLR4/MyD88/NF-κB signaling pathway.
Animals
;
Colitis, Ulcerative/immunology*
;
Toll-Like Receptor 4/immunology*
;
Myeloid Differentiation Factor 88/metabolism*
;
Mice
;
NF-kappa B/metabolism*
;
Signal Transduction/drug effects*
;
Male
;
Alkaloids/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Female
;
Colon/metabolism*
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail