1.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*
2.Mechanism of action of ginsenoside Rg_2 on diabetic retinopathy and angiogenesis based on YAP/TLRs pathway.
Zhuo-Rong LIU ; Yong-Li SONG ; Shang-Qiu NING ; Yue-Ying YUAN ; Yu-Ting ZHANG ; Gai-Mei HAO ; Jing HAN
China Journal of Chinese Materia Medica 2025;50(6):1659-1669
Ginsenoside Rg_2(GRg2) is a triterpenoid compound found in Panax notoginseng. This study explored its effects and mechanisms on diabetic retinopathy and angiogenesis. The study employed endothelial cell models induced by glucose or vascular endothelial growth factor(VEGF), the chorioallantoic membrane(CAM) model, the oxygen-induced retinopathy(OIR) mouse model, and the db/db mouse model to evaluate the therapeutic effects of GRg2 on diabetic retinopathy and angiogenesis. Transwell assays and endothelial tube formation experiments were conducted to assess cell migration and tube formation, while vascular area measurements were applied to detect angiogenesis. The impact of GRg2 on the retinal structure and function of db/db mice was evaluated through retinal thickness and electroretinogram(ERG) analyses. The study investigated the mechanisms of GRg2 by analyzing the activation of Yes-associated protein(YAP) and Toll-like receptors(TLRs) pathways. The results indicated that GRg2 significantly reduced cell migration numbers and tube formation lengths in vitro. In the CAM model, GRg2 exhibited a dose-dependent decrease in the vascular area ratio. In the OIR model, GRg2 notably decreased the avascular and neovascular areas, ameliorating retinal structural disarray. In the db/db mouse model, GRg2 increased the total retinal thickness and enhanced the amplitudes of the a-wave, b-wave, and oscillatory potentials(OPs) in the ERG, improving retinal structural disarray. Transcriptomic analysis revealed that the TLR signaling pathway was significantly down-regulated following YAP knockdown, with PCR results consistent with the transcriptome sequencing findings. Concurrently, GRg2 downregulated the expression of Toll-like receptor 4(TLR4), TNF receptor-associated factor 6(TRAF6), and nuclear factor-kappaB(NF-κB) proteins in high-glucose-induced endothelial cells. Collectively, GRg2 inhibits cell migration and tube formation and significantly reduces angiogenesis in CAM and OIR models, improving retinal structure and function in db/db mice, with its pharmacological mechanism likely involving the down-regulation of YAP expression.
Animals
;
Ginsenosides/pharmacology*
;
Diabetic Retinopathy/physiopathology*
;
Mice
;
YAP-Signaling Proteins
;
Humans
;
Male
;
Signal Transduction/drug effects*
;
Cell Movement/drug effects*
;
Adaptor Proteins, Signal Transducing/genetics*
;
Mice, Inbred C57BL
;
Neovascularization, Pathologic/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Panax notoginseng/chemistry*
;
Endothelial Cells/metabolism*
;
Transcription Factors/genetics*
;
Angiogenesis
3.Buyang Huanwu Decoction promotes angiogenesis after oxygen-glucose deprivation/reoxygenation injury of bEnd.3 cells by regulating YAP1/HIF-1α signaling pathway via caveolin-1.
Bo-Wei CHEN ; Yin OUYANG ; Fan-Zuo ZENG ; Ying-Fei LIU ; Feng-Ming TIAN ; Ya-Qian XU ; Jian YI ; Bai-Yan LIU
China Journal of Chinese Materia Medica 2025;50(14):3847-3856
This study aims to explore the mechanism of Buyang Huanwu Decoction(BHD) in promoting angiogenesis after oxygen-glucose deprivation/reoxygenation(OGD/R) of mouse brain microvascular endothelial cell line(brain-derived Endothelial cells.3, bEnd.3) based on the caveolin-1(Cav1)/Yes-associated protein 1(YAP1)/hypoxia-inducible factor-1α(HIF-1α) signaling pathway. Ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to analyze the blood components of BHD. The cell counting kit-8(CCK-8) method was used to detect the optimal intervention concentration of drug-containing serum of BHD after OGD/R injury of bEnd.3. The lentiviral transfection method was used to construct a Cav1 silent stable strain, and Western blot and polymerase chain reaction(PCR) methods were used to verify the silencing efficiency. The control bEnd.3 cells were divided into a normal group(sh-NC control group), an OGD/R model + blank serum group(sh-NC OGD/R group), and an OGD/R model + drug-containing serum group(sh-NC BHD group). Cav1 silent cells were divided into an OGD/R model + blank serum group(sh-Cav1 OGD/R group) and an OGD/R model + drug-containing serum group(sh-Cav1 BHD group). The cell survival rate was detected by the CCK-8 method. The cell migration ability was detected by a cell migration assay. The lumen formation ability was detected by an angiogenesis assay. The apoptosis rate was detected by flow cytometry, and the expression of YAP1/HIF-1α signaling pathway-related proteins in each group was detected by Western blot. Finally, co-immunoprecipitation was used to verify the interaction between YAP1 and HIF-1α. The results showed astragaloside Ⅳ, formononetin, ferulic acid, and albiflorin in BHD can all enter the blood. The drug-containing serum of BHD at a mass fraction of 10% may be the optimal intervention concentration for OGD/R-induced injury of bEnd.3 cells. Compared with the sh-NC control group, the sh-NC OGD/R group showed significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, significantly increased cell apoptotic rate, significantly lowered phosphorylation level of YAP1 at S127 site, and significantly elevated nuclear displacement level of YAP1 and protein expression of HIF-1α, vascular endothelial growth factor(VEGF), and vascular endothelial growth factor receptor 2(VEGFR2). Compared with the same type of OGD/R group, the sh-NC BHD group and sh-Cav1 BHD group had significantly increased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly decreased cell apoptotic rate, a further decreased phosphorylation level of YAP1 at S127 site, and significantly increased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. Compared with the sh-NC OGD/R group, the sh-Cav1 OGD/R group exhibited significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly increased cell apoptotic rate, a significantly increased phosphorylation level of YAP1 at S127 site, and significantly decreased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. Compared with the sh-NC BHD group, the sh-Cav1 BHD group showed significantly decreased cell survival rate, cell migration rate, mesh number, node number, and lumen length, a significantly increased cell apoptotic rate, a significantly increased phosphorylation level of YAP1 at the S127 site, and significantly decreased nuclear displacement level of YAP1 and protein expression of HIF-1α, VEGF, and VEGFR2. YAP1 protein was present in the protein complex precipitated by the HIF-1α antibody, and HIF-1α protein was also present in the protein complex precipitated by the YAP1 antibody. The results confirmed that the drug-containing serum of BHD can increase the activity of YAP1/HIF-1α pathway in bEnd.3 cells damaged by OGD/R through Cav1 and promote angiogenesis in vitro.
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Signal Transduction/drug effects*
;
Glucose/metabolism*
;
Caveolin 1/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
YAP-Signaling Proteins
;
Oxygen/metabolism*
;
Endothelial Cells/metabolism*
;
Cell Line
;
Adaptor Proteins, Signal Transducing/genetics*
;
Neovascularization, Physiologic/drug effects*
;
Cell Hypoxia/drug effects*
;
Angiogenesis
4.Long noncoding RNA LOC646029 functions as a ceRNA to suppress ovarian cancer progression through the miR-627-3p/SPRED1 axis.
Pengfei ZHAO ; Yating WANG ; Xiao YU ; Yabing NAN ; Shi LIU ; Bin LI ; Zhumei CUI ; Zhihua LIU
Frontiers of Medicine 2023;17(5):924-938
Long noncoding RNAs (lncRNAs) play a crucial regulatory role in the development and progression of multiple cancers. However, the potential mechanism by which lncRNAs affect the recurrence and metastasis of ovarian cancer remains unclear. In the current study, the lncRNA LOC646029 was markedly downregulated in metastatic ovarian tumors compared with primary tumors. Gain- and loss-of-function assays demonstrated that LOC646029 inhibits the proliferation, invasiveness, and metastasis of ovarian cancer cells in vivo and in vitro. Moreover, the downregulation of LOC646029 in metastatic ovarian tumors was strongly correlated with poor prognosis. Mechanistically, LOC646029 served as a miR-627-3p sponge to promote the expression of Sprouty-related EVH1 domain-containing protein 1, which is necessary for suppressing tumor metastasis and inhibiting KRAS signaling. Collectively, our results demonstrated that LOC646029 is involved in the progression and metastasis of ovarian cancer, which may be a potential prognostic biomarker.
Humans
;
Female
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
RNA, Competitive Endogenous
;
Cell Line, Tumor
;
Ovarian Neoplasms/genetics*
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Cell Movement/genetics*
;
Adaptor Proteins, Signal Transducing/metabolism*
5.Single-cell RNA sequencing reveals the transcriptomic landscape of kidneys in patients with ischemic acute kidney injury.
Rong TANG ; Peng JIN ; Chanjuan SHEN ; Wei LIN ; Leilin YU ; Xueling HU ; Ting MENG ; Linlin ZHANG ; Ling PENG ; Xiangcheng XIAO ; Peter EGGENHUIZEN ; Joshua D OOI ; Xueqin WU ; Xiang DING ; Yong ZHONG
Chinese Medical Journal 2023;136(10):1177-1187
BACKGROUND:
Ischemic acute kidney injury (AKI) is a common syndrome associated with considerable mortality and healthcare costs. Up to now, the underlying pathogenesis of ischemic AKI remains incompletely understood, and specific strategies for early diagnosis and treatment of ischemic AKI are still lacking. Here, this study aimed to define the transcriptomic landscape of AKI patients through single-cell RNA sequencing (scRNA-seq) analysis in kidneys.
METHODS:
In this study, scRNA-seq technology was applied to kidneys from two ischemic AKI patients, and three human public scRNA-seq datasets were collected as controls. Differentially expressed genes (DEGs) and cell clusters of kidneys were determined. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, as well as the ligand-receptor interaction between cells, were performed. We also validated several DEGs expression in kidneys from human ischemic AKI and ischemia/reperfusion (I/R) injury induced AKI mice through immunohistochemistry staining.
RESULTS:
15 distinct cell clusters were determined in kidney from subjects of ischemic AKI and control. The injured proximal tubules (PT) displayed a proapoptotic and proinflammatory phenotype. PT cells of ischemic AKI had up-regulation of novel pro-apoptotic genes including USP47 , RASSF4 , EBAG9 , IER3 , SASH1 , SEPTIN7 , and NUB1 , which have not been reported in ischemic AKI previously. Several hub genes were validated in kidneys from human AKI and renal I/R injury mice, respectively. Furthermore, PT highly expressed DEGs enriched in endoplasmic reticulum stress, autophagy, and retinoic acid-inducible gene I (RIG-I) signaling. DEGs overexpressed in other tubular cells were primarily enriched in nucleotide-binding and oligomerization domain (NOD)-like receptor signaling, estrogen signaling, interleukin (IL)-12 signaling, and IL-17 signaling. Overexpressed genes in kidney-resident immune cells including macrophages, natural killer T (NKT) cells, monocytes, and dendritic cells were associated with leukocyte activation, chemotaxis, cell adhesion, and complement activation. In addition, the ligand-receptor interactions analysis revealed prominent communications between macrophages and monocytes with other cells in the process of ischemic AKI.
CONCLUSION
Together, this study reveals distinct cell-specific transcriptomic atlas of kidney in ischemic AKI patients, altered signaling pathways, and potential cell-cell crosstalk in the development of AKI. These data reveal new insights into the pathogenesis and potential therapeutic strategies in ischemic AKI.
Humans
;
Mice
;
Animals
;
Transcriptome/genetics*
;
Ligands
;
Kidney/metabolism*
;
Acute Kidney Injury/metabolism*
;
Ischemia/metabolism*
;
Reperfusion Injury/metabolism*
;
Sequence Analysis, RNA
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Tumor Suppressor Proteins/metabolism*
6.Advances in molecular function of p62 protein and its role in diseases.
Xinying SUI ; Ping XU ; Changzhu DUAN ; Yanchang LI
Chinese Journal of Biotechnology 2023;39(4):1374-1389
Sequestosome 1 (SQSTM1/p62) is a selective autophagy adaptor protein that plays an important role in the clearance of proteins to be degraded as well as in the maintenance of cellular proteostasis. p62 protein has multiple functional domains, which interact with several downstream proteins to precisely regulate multiple signaling pathways, thereby linking p62 to oxidative defense systems, inflammatory responses and nutrient sensing. Studies have shown that mutation or abnormal expression of p62 is closely related to the occurrence and development of various diseases, including neurodegenerative diseases, tumors, infectious diseases, genetic diseases and chronic diseases. This review summarizes the structural features and molecular functions of p62. Moreover, we systematically introduce its multiple functions in protein homeostasis and regulation of signaling pathways. Furthermore, the complexity and versatility of p62 in the occurrence and development of diseases are summarized, with the aim to provide a reference for understanding the function of p62 protein and facilitating related disease research.
Humans
;
Autophagy/genetics*
;
Sequestosome-1 Protein/metabolism*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Signal Transduction
;
Neoplasms/genetics*
7.A YAP/TAZ-CD54 axis is required for CXCR2-CD44- tumor-specific neutrophils to suppress gastric cancer.
Pingping NIE ; Weihong ZHANG ; Yan MENG ; Moubin LIN ; Fenghua GUO ; Hui ZHANG ; Zhenzhu TONG ; Meng WANG ; Fan CHEN ; Liwei AN ; Yang TANG ; Yi HAN ; Ruixian YU ; Wenjia WANG ; Yuanzhi XU ; Linxin WEI ; Zhaocai ZHOU ; Shi JIAO
Protein & Cell 2023;14(7):513-531
As an important part of tumor microenvironment, neutrophils are poorly understood due to their spatiotemporal heterogeneity in tumorigenesis. Here we defined, at single-cell resolution, CD44-CXCR2- neutrophils as tumor-specific neutrophils (tsNeus) in both mouse and human gastric cancer (GC). We uncovered a Hippo regulon in neutrophils with unique YAP signature genes (e.g., ICAM1, CD14, EGR1) distinct from those identified in epithelial and/or cancer cells. Importantly, knockout of YAP/TAZ in neutrophils impaired their differentiation into CD54+ tsNeus and reduced their antitumor activity, leading to accelerated GC progression. Moreover, the relative amounts of CD54+ tsNeus were found to be negatively associated with GC progression and positively associated with patient survival. Interestingly, GC patients receiving neoadjuvant chemotherapy had increased numbers of CD54+ tsNeus. Furthermore, pharmacologically enhancing YAP activity selectively activated neutrophils to suppress refractory GC, with no significant inflammation-related side effects. Thus, our work characterized tumor-specific neutrophils in GC and revealed an essential role of YAP/TAZ-CD54 axis in tsNeus, opening a new possibility to develop neutrophil-based antitumor therapeutics.
Humans
;
Animals
;
Mice
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Stomach Neoplasms/pathology*
;
Neutrophils/pathology*
;
Signal Transduction/genetics*
;
YAP-Signaling Proteins
;
Tumor Microenvironment
;
Hyaluronan Receptors/genetics*
8.RHPN2 is highly expressed in osteosarcoma cells to promote cell proliferation and migration and inhibit apoptosis.
Zhi Yu LIU ; Feng Zhu FANG ; Jing LI ; Guang Yue ZHAO ; Quan Jin ZANG ; Feng ZHANG ; Jun DIE
Journal of Southern Medical University 2022;42(9):1367-1373
OBJECTIVE:
To screen for aberrantly expressed genes in osteosarcoma cells and investigate the role of RHPN2 in regulating the proliferation, apoptosis, migration and tumorigenic abilities of osteosarcoma cells.
METHODS:
We used GEO2R to analyze the differential gene expression profile between osteosarcoma cells and normal cells in the GSE70414 dataset. RTqPCR and Western blotting were performed to detect RHPN2 expression in osteosarcoma cell lines MG-63, 143B and SAOS2. Two RHPN2-shRNA and a control NC-shRNA were designed to silence the expression of RHPN2 in 143B cells, and CCK8 assay, colony-forming assay, annexin V-FITC/PI staining and scratch assays were carried out to examine the changes in proliferation, apoptosis and migration of the cells. We also established nude mouse models bearing osteosarcoma xenografts derived 143B cells and RHPN2-shRNA-transfected 143B cells, and assessed the effect of RHPN2 silencing on osteosarcoma cell tumorigenesis using HE staining. Kaplan-Meier survival curves were used to analyze the correlation between RHPN2 expression and survival outcomes of patients with osteosarcoma.
RESULTS:
RHPN2 expression was significantly upregulated in osteosarcoma cell lines MG-63, 143B and SAOS2 (P < 0.01). Silencing of RHPN2 significantly inhibited the proliferation and migration of 143B cells in vitro, promoted cell apoptosis (P < 0.01), and suppressed tumorigenic capacity of the cells in nude mice. A high expression of RHPN2 was significantly correlated with a poor prognosis of patients with osteosarcoma (P < 0.05).
CONCLUSION
RHPN2 is highly expressed in osteosarcoma cells to promote cell proliferation and migration and inhibits cell apoptosis. A high expression of RHPN2 is associated with a poorer prognosis of the patients with osteosarcoma.
Adaptor Proteins, Signal Transducing/metabolism*
;
Animals
;
Apoptosis
;
Bone Neoplasms/metabolism*
;
Carcinogenesis
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Cell Proliferation/physiology*
;
Humans
;
Immediate-Early Proteins
;
Mice
;
Mice, Nude
;
Osteosarcoma/metabolism*
;
RNA, Small Interfering/genetics*
9.Effects of TYROBP Deficiency on Neuroinflammation of a Alzheimer's Disease Mouse Model Carrying a PSEN1 p.G378E Mutation.
Li RAN ; Lv ZHAN-YUN ; Li YAN-XIN ; Li WEI ; Hao YAN-LEI
Chinese Medical Sciences Journal 2022;37(4):320-330
Objective To study the effects of TYRO protein kinase-binding protein (TYROBP) deficiency on learning behavior, glia activation and pro-inflammatory cycokines, and Tau phosphorylation of a new Alzheimer's disease (AD) mouse model carrying a PSEN1 p.G378E mutation.Methods A new AD mouse model carrying PSEN1 p.G378E mutation was built based on our previously found AD family which might be ascribed to the PSEN1 mutation, and then crossed with TYROBP deficient mice to produce the heterozygous hybrid mice (PSEN1G378E/WT; Tyrobp+/-) and the homozygous hybrid mice (PSEN1G378E/G378E; Tyrobp-/-). Water maze test was used to detect spatial learning and memory ability of mice. After the mice were sacrificed, the hippocampus was excised for further analysis. Immunofluorescence was used to identify the cell that expresses TYROBP and the number of microglia and astrocyte. Western blot was used to detect the expression levels of Tau and phosphorylated Tau (p-Tau), and ELISA to measure the levels of pro-inflammatory cytokines. Results Our results showed that TYROBP specifically expressed in the microglia of mouse hippocampus. Absence of TYROBP in PSEN1G378E mutation mouse model prevented the deterioration of learning behavior, decreased the numbers of microglia and astrocytes, and the levels of interleukin-6, interleukin-1β and tumor necrosis factor-α in the hippocampus (all P < 0.05). The ratios of AT8/Tau5, PHF1/Tau5, pT181/Tau5, pT231/Tau5 and p-ERK/ERK were all higher in homozygous hybrid mice (PSEN1G378E/G378E; Tyrobp-/- mice) compared with PSEN1G378E/G378E mice (all P < 0.05). Conclusions TYROBP deficiency might play a protective role in the modulation of neuroinflammation of AD. However, the relationship between neuroinflammation processes involving microglia and astrocyte activation, and release of pro-inflammatory cytokines, and p-Tau pathology needs further study.
Mice
;
Animals
;
Alzheimer Disease/genetics*
;
Neuroinflammatory Diseases
;
Hippocampus/pathology*
;
Mutation
;
Cytokines/pharmacology*
;
Disease Models, Animal
;
tau Proteins/pharmacology*
;
Amyloid beta-Peptides/metabolism*
;
Adaptor Proteins, Signal Transducing/pharmacology*
10.Silencing DNMT1 Attenuates the Effect of WIF-1 Gene Promoter Methylation on the Biological Behavior of Chronic Myeloid Leukemia K562 Cells.
Kun WU ; Zhen JIN ; Yi-Xun LI ; Xin LI ; Shen-Ju CHENG ; Yan-Hong LI ; Chong GUO
Journal of Experimental Hematology 2021;29(6):1768-1774
OBJECTIVE:
To investigate the effect of silencing DNA methyltransferase 1(DNMT1) to the methylation of the promoter of the tumor suppressor gene wnt-1 (WIF-1) in human chronic myeloid leukemia (CML) cells.
METHODS:
DNMT1 siRNAi plasmid was constructed and DNMT1 siRNAi was transfected into CML K562 cells. RT-PCR and Western blot were used to detect the expression of DNMT1 gene and related protein, and methylation PCR was used to detect WIF-1 gene promoter methylation level. The trypan blue exclusion and MTT assay were used to detect the cell proliferation, flow cytometry were used to detect the cell apoptosis rate, colony formation assay was used to detect cell colony formation ability. Expression of Wnt/β- catenin and its downstream signaling pathway proteins were detected by Western blot after DNMT1 gene was silenced.
RESULTS:
The expression level of DNMT1 mRNA and its related protein in the experimental group were significantly lower than those in the control group and negative control group (P<0.05). After 72 hours of successful transfection, the WIF-1 gene in the control group and negative control group were completely methylated, while in the experimental group, the methylation level significantly decreased. The results of MSP showed that the PCR product amplified by the unmethylated WIF-1 primer in the experimental group increased significantly,while by the methylated WIF-1 primer decreased significantly. After 48 h of transfection, the OD value, viable cell number and colony formation of the cells in experimental group were significantly lower than those in the negative control group and the control group (P<0.05). The apoptosis rate of the cells in experimental group was significantly higher than those in the negative control group and control group (P<0.05). The expression levels of β- actin, myc, cyclin D1 and TCF-1 in K562 cells in the experimental group were significantly lower than those in the negative control group and control group (P<0.05).
CONCLUSION
Silencing DNMT1 gene can inhibit the proliferation and promote the apoptosis of K562 cells. The mechanism may be related to reverse the hypermethylation level of the WIF-1 gene promoter, thereby inhibit the activity of the Wnt/β- catenin signaling pathway.
Adaptor Proteins, Signal Transducing/metabolism*
;
DNA Methylation
;
Humans
;
K562 Cells
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics*
;
Repressor Proteins/metabolism*

Result Analysis
Print
Save
E-mail