1.Site-directed mutagenesis enhances the activity of benzylidene acetone synthase of polyketide synthase from Polygonum cuspidatum.
Zhimin HE ; Wenrui MA ; Liping YU ; Heshu LÜ ; Mingfeng YANG
Chinese Journal of Biotechnology 2023;39(7):2806-2817
Polygonum cuspidatum polyketide synthase 1 (PcPKS1) has the catalytic activity of chalcone synthase (CHS) and benzylidene acetone synthase (BAS), which can catalyze the production of polyketides naringenin chalcone and benzylidene acetone, and then catalyze the synthesis of flavonoids or benzylidene acetone. In this study, three amino acid sites (Thr133, Ser134, Ser33) that may affect the function of PcPKS1 were identified by analyzing the sequences of PcPKS1, the BAS from Rheum palmatum and the CHS from Arabidopsis thaliana, as well as the conformation of the catalytic site of the enzyme. Molecular modification of PcPKS1 was carried out by site-directed mutagenesis, and two mutants were successfully obtained. The in vitro enzymatic reactions were carried out, and the differences in activity were detected by high performance liquid chromatography (HPLC). Finally, mutants T133LS134A and S339V with bifunctional activity were obtained. In addition to bifunctional activities of BAS and CHS, the modified PcPKS1 had much higher BAS activity than that of the wild type PcPKS1 under the conditions of pH 7.0 and pH 9.0, respectively. It provides a theoretical basis for future use of PcPKS1 in genetic engineering to regulate the biosynthesis of flavonoids and raspberry ketones.
Amino Acid Sequence
;
Fallopia japonica/metabolism*
;
Polyketide Synthases/chemistry*
;
Acetone
;
Mutagenesis, Site-Directed
;
Flavonoids/metabolism*
;
Acyltransferases/metabolism*
2.Expression and Clinical Significance of ATP Citrate Lyase in Hepatocellular Carcinoma.
Hua-Jing YU ; Lu-Yang WEI ; Shan-Shan LIU ; Zhong-Tao ZHANG ; Cheng-Jian GUAN
Acta Academiae Medicinae Sinicae 2023;45(5):743-751
Objective To investigate the role of ATP citrate lyase(ACLY)in the development of hepatocellular carcinoma(HCC)and the impact of this enzyme on the immune microenvironment of HCC.Methods We utilized the University of Alabama at Birmingham Cancer Data Analysis Portal and the Gene Expression Profiling Interactive Analysis to identify the changes in ACLY expression and prognosis across different tumor types from The Cancer Genome Atlas.With HCC as the disease model,we analyzed the ACLY expression in HCC samples from the gene expression database.Furthermore,we collected the clinical specimens from HCC patients to verify the mRNA and protein levels of ACLY.In addition,we conducted transcriptome sequencing after knocking down the expression of ACLY to analyze the differentially expressed genes and investigated the impact of ACLY expression interference on cell proliferation and other functions.Finally,we explored the correlations of ACLY with immune cells and immune infiltration in the tumor microenvironment,new antigens,and immune checkpoint genes.Results ACLY expression was significantly up-regulated in solid tumors including HCC(all P<0.05),and high ACLY expression was associated with overall survival rate in HCC(P=0.005).Furthermore,high ACLY expression affected the presence of immune cells(e.g.,tumor-associated fibroblasts)and the expression of genes involved in lipid metabolism(all P<0.05).Conclusions ACLY is closely related to the occurrence and development of HCC and lipid metabolism abnormalities.Moreover,it has a specific impact on the immune microenvironment of HCC.
Humans
;
ATP Citrate (pro-S)-Lyase/metabolism*
;
Carcinoma, Hepatocellular
;
Clinical Relevance
;
Lipid Metabolism
;
Liver Neoplasms
;
Tumor Microenvironment
5.Cloning and functional characterization of a lysophosphatidic acid acyltransferase gene from Perilla frutescens.
Yali ZHOU ; Xusheng HUANG ; Yueru HAO ; Guiping CAI ; Xianfei SHI ; Runzhi LI ; Jiping WANG
Chinese Journal of Biotechnology 2022;38(8):3014-3028
Perilla (Perilla frutescens L.) is an important edible-medicinal oil crop, with its seed containing 46%-58% oil. Of perilla seed oil, α-linolenic acid (C18:3) accounts for more than 60%. Lysophosphatidic acid acyltransferase (LPAT) is one of the key enzymes responsible for triacylglycerol assembly in plant seeds, controlling the metabolic flow from lysophosphatidic acid to phosphatidic acid. In this study, the LPAT2 gene from the developing seeds of perilla was cloned and designated as PfLPAT2. The expression profile of PfLPAT2 gene was examined in various tissues and different seed development stages of perilla (10, 20, 30, and 40 days after flowering, DAF) by quantitative real-time PCR (qRT-PCR). In order to detect the subcellular localization of PfLPAT2 protein, a fusion expression vector containing PfLPAT2 and GFP was constructed and transformed into Nicotiana benthamiana leaves by Agrobacterium-mediated infiltration. In order to explore the enzymatic activity and biological function of PfLPAT2 protein, an E. coli expression vector, a yeast expression vector and a constitutive plant overexpression vector were constructed and transformed into an E. coli mutant SM2-1, a wild-type Saccharomyces cerevisiae strain INVSc1, and a common tobacco (Nicotiana tabacum, variety: Sumsun NN, SNN), respectively. The results showed that the PfLPAT2 open reading frame (ORF) sequence was 1 155 bp in length, encoding 384 amino acid residues. Functional structure domain prediction showed that PfLPAT2 protein has a typical conserved domain of lysophosphatidic acid acyltransferase. qRT-PCR analysis indicated that PfLPAT2 gene was expressed in all tissues tested, with the peak level in seed of 20 DAF of perilla. Subcellular localization prediction showed that PfLPAT2 protein is localized in cytoplasm. Functional complementation assay of PfLPAT2 in E. coli LPAAT mutant (SM2-1) showed that PfLPAT2 could restore the lipid biosynthesis of SM2-1 cell membrane and possess LPAT enzyme activity. The total oil content in the PfLPAT2 transgenic yeast was significantly increased, and the content of each fatty acid component changed compared with that of the non-transgenic control strain. Particularly, oleic acid (C18:1) in the transgenic yeast significantly increased, indicating that PfLPAT2 has a higher substrate preference for C18:1. Importantly, total fatty acid content in the transgenic tobacco leaves increased by about 0.42 times compared to that of the controls, with the C18:1 content doubled. The increased total oil content and the altered fatty acid composition in transgenic tobacco lines demonstrated that the heterologous expression of PfLPAT2 could promote host oil biosynthesis and the accumulation of health-promoting fatty acids (C18:1 and C18:3). This study will provide a theoretical basis and genetic elements for in-depth analysis of the molecular regulation mechanism of perilla oil, especially the synthesis of unsaturated fatty acids, which is beneficial to the genetic improvement of oil quality of oil crops.
Acyltransferases
;
Cloning, Molecular
;
Escherichia coli/metabolism*
;
Fatty Acids
;
Perilla frutescens/metabolism*
;
Plant Oils
;
Plant Proteins/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
Seeds/chemistry*
;
Tobacco/genetics*
6.Association of SCN2A, ABCB1 and CYP2C19*3 with genetic susceptibility to major depressive disorder.
Ting ZHANG ; Qing Min RAO ; Yong Yin HE ; Jin Tai CAI ; Hai Ying LIU ; Yu Long LIN
Chinese Journal of Preventive Medicine 2022;56(3):287-294
Objective: Due to genetic factors might increase the risk of depression, this study investigated the genetic risk factors of depression in Chinese Han population by analyzing the association between 13 candidate genes and depression. Methods: 439 depression patients and 464 healthy controls were included in this case-control study. Case group consisted of 158 males and 281 females, aged (29.84±14.91) years old, who were hospitalized in three departments of the affiliated Brain Hospital of Guangzhou Medical University including Affective Disorders Department, Adult Psychiatry Department and Geriatrics Department, from February 2020 to September 2021. The control group consisted of 196 males and 268 females, aged (30.65±12.63) years old. 20 loci of 13 candidate genes in all subjects were detected by MALDI-TOF mass spectrometry. Age difference was compared using the student's t-test, the distributions of gender and genotype were analyzed with Pearson's Chi-square test. The analyses of Hardy-Weinberg equilibrium, allele frequency and the genetic association of depression were conducted using the corresponding programs in PLINK software. Results: PLINK analysis showed that SCN2A rs17183814, ABCB1 rs1045642, CYP2C19*3 rs4986893 and NAT2*5A rs1799929 were associated with depression before Bonferroni correction (χ2=10.340, P=0.001; χ2=11.010, P=0.001; χ2=9.781, P=0.002; χ2=4.481, P=0.034). The frequencies of minor alleles of above loci in the control group were 12.07%, 43.64%, 2.59% and 3.88%, respectively. The frequencies of minor alleles of loci mentioned above in the case group were 17.43%, 35.99%, 5.47% and 6.04%, respectively. OR values were 1.538, 0.726, 2.178 and 1.592, respectively. After 1 000 000 permutation tests using Max(T) permutation procedure, the four loci were still statistically significant, the empirical P-value were 0.002, 0.001, 0.003 and 0.042, respectively. However, only three loci including SCN2A rs17183814, ABCB1 rs1045642 and CYP2C19 rs4986893 had statistical significance after Bonferroni correction, the adjusted P-value were 0.026, 0.018 and 0.035, respectively. Conclusion: SCN2A rs17183814, ABCB1 rs1045642 and CYP2C19*3 rs4986893 were associated with depression's susceptibility in Chinese Han population. The A allele of SCN2A rs17183814 and CYP2C19*3 rs4986893 were risk factors for depression, while the T allele of ABCB1 rs1045642 was a protective factor for depression.
ATP Binding Cassette Transporter, Subfamily B/genetics*
;
Adolescent
;
Adult
;
Alleles
;
Arylamine N-Acetyltransferase/genetics*
;
Case-Control Studies
;
Clopidogrel
;
Cytochrome P-450 CYP2C19/genetics*
;
Depressive Disorder, Major/genetics*
;
Female
;
Gene Frequency
;
Genetic Predisposition to Disease
;
Genotype
;
Humans
;
Male
;
NAV1.2 Voltage-Gated Sodium Channel
;
Polymorphism, Single Nucleotide
;
Young Adult
7.Cloning and function analysis of chalcone isomerase gene and chalcone synthase gene in Lonicera macranthoides.
Juan ZENG ; Yu-Qing LONG ; Can LI ; Mei ZENG ; Min YANG ; Xin-Ru ZHOU ; Xiang-Dan LIU ; Ri-Bao ZHOU
China Journal of Chinese Materia Medica 2022;47(9):2419-2429
In order to explore the functions of genes of key rate-limiting enzymes chalcone isomerase(CHI) and chalcone synthase(CHS) in the biosynthesis of flavonoids in Lonicera macranthoides, this study screened and cloned the cDNA sequences of CHI and CHS genes from the transcriptome data of conventional variety and 'Xianglei' of L. macranthoides. Online bioinformatics analysis software was used to analyze the characteristics of the encoded proteins, and quantitative reverse-transcription polymerase chain reaction(qRT-PCR) to detect the expression of CHI and CHS in different parts of the varieties at different flowering stages. The content of luteo-loside was determined by high performance liquid chromatography(HPLC) and the correlation with the expression of the two genes was analyzed. The results showed that the CHI and CHS of the two varieties contained a 627 bp and 1170 bp open reading frame(ORF), respectively, and the CHI protein and CHS protein were stable, hydrophilic, and non-secretory. qRT-PCR results demonstrated that CHI and CHS of the two varieties were differentially expressed in stems and leaves at different flowering stages, particularly the key stages. Based on HPLC data, luteoloside content was in negative correlation with the relative expression of the genes. Thus, CHI and CHS might regulate the accumulation of flavonoids in L. macranthoides, and the specific functions should be further studied. This study cloned CHI and CHS in L. macranthoides and analyzed their expression for the first time, which laid a basis for investigating the molecular mechanism of the differences in flavonoids such as luteoloside in L. macranthoides and variety breeding.
Acyltransferases/metabolism*
;
Chalcone
;
Cloning, Molecular
;
Intramolecular Lyases
;
Lonicera/metabolism*
;
Plant Breeding
8.Correlation analysis of clock genes and MEN2 medullary thyroid carcinoma.
Ya Kui MOU ; Chao REN ; Yu Mei LI ; Guo Hua YU ; Gui Bin ZHENG ; Hong SONG ; Cong Xian LU ; Ru Xian TIAN ; Xin Cheng SONG
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2022;57(9):1079-1086
Objective: To investigate the correlation between CLOCK and BMAL1 genes and MEN2 medullary thyroid carcinoma (MTC). Methods: Thirteen cases with MEN2 MTC and thirteen cases with non-MEN2 MTC were selected who were treated in the Yantai Yuhuangding Hospital between January 2013 and September 2021. Clinical indicators such as blood calcitonin level, tumor diameter and metastatic lymph node of patients were collected. The expression differences of CLOCK and BMAL1 between MEN2 MTC and para-carcinoma tissue as well as between MEN2 MTC and non-MEN2 MTC were detected by immunohistochemistry and qPCR. The correlation between lymph node metastasis and CLOCK or BMAL1 expression was analyzed. Protein-protein interaction (PPI) network analysis combined with qPCR and correlation analysis was used to explore the expression regulation relationship between RET and circadian clock genes. The rhythm disorder of MEN2 cells was verified by lipopolysaccharide cell stimulation experiment after dexamethasone rhythm synchronization. Results: MEN2 MTC exhibited typical RET gene mutation. The mean blood calcitonin level, the tumor diameter and the number of metastatic lymph nodes of patients with MEN2 MTC were higher than those of patients with non-MEN2 MTC (t value was 2.76, 2.53, 2.26, all P<0.05). Immunohistochemical results showed that the expression levels of CLOCK and BMAL1 in MEN2 MTC were higher than those in non-MEN2 MTC, while negatively expressed in para-cancerous thyroid follicle. qPCR displayed that the expression of CLOCK gene in cancer tissues was higher than that in non-MEN2 MTC and para-cancerous tissues (t value was 2.68 and 2.86, all P<0.05); the expression of BMAL1 gene in MEN2 MTC was higher than that in non-MEN2 MTC and para-cancerous tissues (t value was 2.21 and 2.35, all P<0.05). Correlation analysis showed that the expression levels of CLOCK and BMAL1 genes were positively correlated with the number of lymph node metastases in patients with MEN2 MTC (r=0.65, P<0.001; r=0.52, P=0.005). PPI network analysis indicated that the expression of CLOCK gene was positively correlated with the abnormal expression of RET gene (r=0.96, P<0.001). With lipopolysaccharide to stimulate cultured cells in vitro after dexamethasone rhythm synchronization, the expressions of CLOCK and BMAL1 in MEN2 MTC cells (0.47±0.22 and 2.60±1.48) at 12 hours of synchronization were significantly lower than those in para-cancerous tissues (1.70±1.62 and 8.23±2.52), the difference was statistically significant(t=5.04, P=0.007; t=3.34, P=0.029). Conclusion: CLOCK and BMAL1 are correlated with the occurrence and development of MEN2 MTC, and may be potential targets for the development of new therapeutic strategies for MEN2 MTC.
ARNTL Transcription Factors/genetics*
;
CLOCK Proteins/genetics*
;
Calcitonin
;
Carcinoma, Neuroendocrine/genetics*
;
Dexamethasone
;
Humans
;
Lipopolysaccharides
;
Lymphatic Metastasis
;
Multiple Endocrine Neoplasia Type 2a/genetics*
;
Thyroid Neoplasms/surgery*
9.Novel Pathogenic Mutation of PNPLA1 Identified in Autosomal Recessive Congenital Ichthyosis: A Case Report.
Li HAN ; Qian LIJUAN ; Xu NAN ; Huang LI ; Qiao LI-XING
Chinese Medical Sciences Journal 2022;37(4):349-352
Autosomal recessive congenital ichthyosis (ARCI) is characterized by being born as collodion babies, hyperkeratosis, and skin scaling. We described a collodion baby at birth with mild ectropion, eclabium, and syndactyly. Whole exome sequencing showed a compound heterozygous variant c.[56C>A], p.(Ser19X) and c.[100G>A], p.(Ala34Thr) in the PNPLA1 gene [NM_001145717; exon 1]. The protein encoded by PNPLA1 acts as a unique transacylase that specifically transfers linoleic acid from triglyceride to ω-hydroxy fatty acid in ceramide, thus giving rise to ω-O-acylceramide, a particular class of sphingolipids that is essential for skin barrier function. The variant was located in the patatin core domain of PNPLA1 and resulted in a truncated protein which could disrupt the function of the protein. This case report highlights a novel compound heterozygous mutation in PNPLA1 identified in a Chinese child.
Humans
;
Infant, Newborn
;
Acyltransferases/genetics*
;
Ceramides/metabolism*
;
Collodion
;
Ichthyosis, Lamellar/genetics*
;
Lipase/metabolism*
;
Mutation
;
Phospholipases/genetics*
10.Internal circadian clock and liver metabolism.
Ya-Qiong CHEN ; Ya-Xin LIU ; Lei WANG ; Ling-Qin ZHOU ; Yi LIU
Acta Physiologica Sinica 2021;73(5):734-744
Circadian clock is an internal autonomous time-keeping system, including central clocks located in the suprachiasmatic nucleus (SCN) and peripheral clocks. The molecular circadian clock consists of a set of interlocking transcriptional-translational feedback loops that take the clock-controlled genes 24 h to oscillate. The core mechanism of molecular circadian clock is that CLOCK/BMAL1 dimer activates the transcription of cryptochromes (CRYs) and Periods (PERs), which act as transcriptional repressors of further CLOCK/BMAL1-mediated transcription. In addition to this basic clock, there is an additional sub-loop of REV-ERBα and RORα regulating the transcription of BMAL1. Approximately 80% protein-coding genes demonstrate significant rhythmicity. The earth rotation is responsible for the generation of the daily circadian rhythms. To coordinate metabolic balance and energy availability, almost all organisms adapt to the rhythm. Studies have shown that circadian clock integrating with metabolic homeostasis increases the efficiency of energy usage and coordinates with different organs in order to adapt to internal physiology and external environment soon. As the central organ of metabolism, the liver performs various physiological activities nearly all controlled by the circadian clock. There are multiple interactive regulation mechanisms between the circadian clock and the regulation of liver metabolism. The misalignment of metabolism with tissue circadian is identified as a high-risk factor of metabolic diseases. This article reviews the recent studies on circadian physiological regulation of liver glucose, lipid and protein metabolism and emphasizes oscillation of mitochondrial function. We also take an outlook for new methods and application of circadian clock research in the future.
CLOCK Proteins
;
Circadian Clocks/genetics*
;
Circadian Rhythm
;
Liver
;
Suprachiasmatic Nucleus

Result Analysis
Print
Save
E-mail