1.Comparison of anti-inflammatory, antibacterial and analgesic activities of formulated granules versus traditional decoction of Yinqiao Powder.
Zhuolin GUO ; Zhiheng ZHANG ; Xindeng GUO ; Weiwei YANG ; Zhiqing LIANG ; Jinying OU ; Huihui CAO ; Zibin LU ; Linzhong YU ; Junshan LIU
Journal of Southern Medical University 2025;45(5):1003-1012
OBJECTIVES:
To compare the anti-inflammatory, antibacterial and analgesic effects of Yinqiao Powder (YQS) formulated granules and decoction.
METHODS:
We first evaluated the anti-inflammatory effects of the two dosage forms of YQS in a LPS-induced RAW 264.7 cell model using RT-qPCR and Western blotting. We further constructed zebrafish models of inflammation by copper sulfate exposure, caudal fin transection, or LPS and Poly (I:C) microinjection, and evaluated anti-inflammatory effects of YQS granules and decoction by examining neutrophil aggregation and HE staining findings. In a mouse model of acute lung injury (ALI) induced by intratracheal LPS instillation, the effects of YQS gavage at 10, 15, and 20 g/kg on lung pathologies were evaluated by calculating lung wet-dry weight ratio and using HE staining, ELISA and Western blotting. The microbroth dilution method was used to evaluate the antibacterial effect of YQS. Mouse pain models established by hot plate and intraperitoneal injection of glacial acetic acid were used to evaluate the analgesic effects of YQS at 10, 15, and 20 g/kg.
RESULTS:
Both YQS granules and decoction significantly reduced TNF-α, IL-6, and IL-1β expressions and p-STAT3 (Tyr 705) phosphorylation level in LPS-induced RAW 264.7 cells, and obviously inhibited neutrophil aggregation in the zebrafish models. In ALI mice, YQS granules and decoction effectively ameliorated lung injury, lowered lung wet-dry weight ratio, and reduced p-STAT3 (Tyr 705) expression and TNF-α and IL-6 levels. YQS produced obvious antibacterial effect at the doses of 15.63 and 31.25 mg/mL, and significantly reduced body torsion and increased pain threshold in the mouse pain models.
CONCLUSIONS
The two dosage forms of TQS have similar anti-inflammatory, antibacterial and analgesic effects with only differences in their inhibitory effect on TNF-α, IL-6 and IL-1β mRNA expressions in LPS-induced RAW 264.7 cells.
Animals
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Anti-Inflammatory Agents/pharmacology*
;
Analgesics/pharmacology*
;
RAW 264.7 Cells
;
Zebrafish
;
Anti-Bacterial Agents/pharmacology*
;
Powders
;
Tumor Necrosis Factor-alpha/metabolism*
;
Acute Lung Injury/drug therapy*
;
Interleukin-6/metabolism*
;
Lipopolysaccharides
2.Design and inflammation-targeting efficiency assessment of an engineered liposome-based nanomedicine delivery system targeting E-selectin.
Yumeng YE ; Bo YU ; Shasha LU ; Yu ZHOU ; Meihong DING ; Guilin CHENG
Journal of Southern Medical University 2025;45(5):1013-1022
OBJECTIVES:
To develop an E-selectin-targeting nanomedicine delivery system that competitively inhibits E-selectin-neutrophil ligand binding to block neutrophil adhesion to vessels and suppress their recruitment to the lesion sites.
METHODS:
Doxorubicin hydrochloride (DOX)-loaded liposomes (IEL-Lip/DOX) conjugated with E-selectin-affinity peptide IELLQARC were developed using a post-insertion method. Two formulations [2-1P: Mol(PC): Mol(DPI)=100:1; 2-3P: 100:3] were prepared and their modification density and in vitro release characteristics were determined. Their targeting efficacy was assessed in a cell model of LPS-induced inflammation, a mouse model of acute lung injury (ALI), a rat femoral artery model of physical injury-induced inflammation, and a zebrafish model of local inflammation.
RESULTS:
The prepared IEL-Lip/DOX 2-1P and 2-3P had peptide modification densities of 4.76 and 7.57 pmoL/cm2, respectively. Compared with unmodified liposomes, IEL-Lip/DOX exhibited significantly reduced 48-h cumulative release rates at pH 5.5. In the inflammation cell model, IEL-Lip/DOX showed increased uptake by activated inflammatory endothelial cells, and 2-1P exhibited a higher trans-endothelial ability. In ALI mice, the fluorescence intensity of IEL-Lip/Cy5.5 increased significantly in lung tissues by 53.71% [Z-(2-1P)] and 93.41% [Z-(2-3P)], and 2-1P had an increased distribution by 24.19% in the inflammatory lung tissue compared to normal mouse lung tissue. In rat femoral artery models, 2-1P had greater injured/normal vessel fluorescence intensity contrast. In the zebrafish models, both 2-1P and 2-3P showed increased aggregation at the site of inflammation.
CONCLUSIONS
This E-selectin-targeting nanomedicine delivery system efficiently targets activated inflammatory endothelial cells to increase drug concentration at the inflammatory site, which sheds light on new strategies for treating neutrophil-mediated inflammatory diseases and practicing the concept of "one drug for multiple diseases".
Animals
;
Liposomes
;
Rats
;
Nanomedicine
;
E-Selectin
;
Drug Delivery Systems
;
Inflammation/drug therapy*
;
Mice
;
Doxorubicin/analogs & derivatives*
;
Zebrafish
;
Acute Lung Injury/drug therapy*
3.Aspirin reduces lung inflammatory response in acute lung injury/acute respiratory distress syndrome: a Meta-analysis based on animal experiments.
Ying LIU ; Xianjun CHEN ; Chuan XIAO ; Jia YUAN ; Qing LI ; Lu LI ; Juan HE ; Feng SHEN
Chinese Critical Care Medicine 2024;36(12):1261-1267
OBJECTIVE:
To systematically evaluate the impact of aspirin on the pulmonary inflammatory response in animal models of acute lung injury/acute respiratory distress syndrome (ALI/ARDS).
METHODS:
Experimental research on aspirin therapy or prevention of ALI/ARDS in animal models were searched in PubMed, Web of Science, Cochrane library, Embase, China biology medicine, CNKI, Wanfang, VIP. The search time limit was from the establishment of the database to July 17, 2023. The control group established the ALI/ARDS model without any pharmacological intervention. The intervention group was given aspirin or aspirin-derived compounds or polymeric-aspirin (Poly-A) at different time points before and after the preparation of the model, of which there was no restriction on the dosage form, dosage, mode of administration, or number of doses. The primary outcome indicators included bronchoalveolar lavage fluid (BALF) or lung tissue myeloperoxidase (MPO) activity, interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α) and the counts of neutrophils in BALF. Two researchers screened the literature and extracted information based on inclusion and exclusion criteria. Literature quality was assessed by the bias risk assessment tool SYRCLE. RevMan 5.3 software was used for data synthesis and statistical analysis.
RESULTS:
A total of 17 papers were eventually included, involving a total of 449 animal models, all of which were murine. One paper was at high risk of bias and the rest 16 papers were at moderate risk of bias. Meta-analysis showed that compared with the control group, the neutrophil count in BALF [standardized mean difference (SMD) = -5.06, 95% confidence interval (95%CI) was -7.00 to -3.12, P < 0.000 01], the myeloperoxidase (MPO) activity in BALF or lung tissue (SMD = -3.45, 95%CI was -4.43 to -2.47, P < 0.000 01), the TNF-α level in BALF or lung tissue (SMD = -2.78, 95%CI was -3.58 to -1.98, P < 0.000 01), and the IL-1β level in BALF or lung tissue (SMD = -3.12, 95%CI was -4.56 to -1.69, P < 0.000 1) were significantly decreased in the ALI/ARDS model of the intervention group.
CONCLUSIONS
Aspirin reduces the level of lung inflammation in animal models of ALI/ARDS. However, there are problems of poor quality and significant heterogeneity of the included studies, which still need our further validation.
Animals
;
Acute Lung Injury/drug therapy*
;
Aspirin/pharmacology*
;
Respiratory Distress Syndrome/drug therapy*
;
Disease Models, Animal
;
Bronchoalveolar Lavage Fluid/chemistry*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-1beta/metabolism*
;
Peroxidase/metabolism*
;
Lung/metabolism*
;
Neutrophils/drug effects*
4.Shenfu Injection alleviates sepsis-associated lung injury by regulating HIF-1α.
Luan-Luan ZHANG ; Ya-Nan ZI ; Ye-Peng ZHANG ; Hui PEI ; Xiang-Yu ZHENG ; Jia-Feng XIE ; Dong XU ; Zhi-Qiang ZHU
China Journal of Chinese Materia Medica 2023;48(23):6492-6499
Shenfu Injection(SFI) is praised for the high efficacy in the treatment of septic shock. However, the precise role of SFI in the treatment of sepsis-associated lung injury is not fully understood. This study investigated the protective effect of SFI on sepsis-associated lung injury by a clinical trial and an animal experiment focusing on the hypoxia-inducing factor-1α(HIF-1α)-mediated mitochondrial autophagy. For the clinical trial, 70 patients with sepsis-associated lung injury treated in the emergency intensive care unit of the First Affiliated Hospital of Zhengzhou University were included. The levels of interleukin(IL)-6 and tumor necrosis factor(TNF)-α were measured on days 1 and 5 for every patient. Real-time quantitative polymerase chain reaction(RT-qPCR) was performed to determine the mRNA level of hypoxia inducible factor-1α(HIF-1α) in the peripheral blood mononuclear cells(PBMCs). For the animal experiment, 32 SPF-grade male C57BL/6J mice(5-6 weeks old) were randomized into 4 groups: sham group(n=6), SFI+sham group(n=10), SFI+cecal ligation and puncture(CLP) group(n=10), and CLP group(n=6). The body weight, body temperature, wet/dry weight(W/D) ratio of the lung tissue, and the pathological injury score of the lung tissue were recorded for each mouse. RT-qPCR and Western blot were conducted to determine the expression of HIF-1α, mitochondrial DNA(mt-DNA), and autophagy-related proteins in the lung tissue. The results of the clinical trial revealed that the SFI group had lowered levels of inflammatory markers in the blood and alveolar lavage fluid and elevated level of HIF-1α in the PBMCs. The mice in the SFI group showed recovered body temperature and body weight. lowered TNF-α level in the serum, and decreased W/D ratio of the lung tissue. SFI reduced the inflammatory exudation and improved the alveolar integrity in the lung tissue. Moreover, SFI down-regulated the mtDNA expression and up-regulated the protein levels of mitochondrial transcription factor A(mt-TFA), cytochrome c oxidase Ⅳ(COXⅣ), HIF-1α, and autophagy-related proteins in the lung tissue of the model mice. The findings confirmed that SFI could promote mitophagy to improve mitochondrial function by regulating the expression of HIF-1α.
Humans
;
Male
;
Mice
;
Animals
;
Leukocytes, Mononuclear
;
Mice, Inbred C57BL
;
Lung/metabolism*
;
Acute Lung Injury/drug therapy*
;
Tumor Necrosis Factor-alpha/genetics*
;
Sepsis/genetics*
;
Hypoxia/pathology*
;
Autophagy-Related Proteins
;
Body Weight
;
Drugs, Chinese Herbal
5.Protective Mechanism of Cordyceps sinensis Treatment on Acute Kidney Injury-Induced Acute Lung Injury through AMPK/mTOR Signaling Pathway.
Ruo-Lin WANG ; Shu-Hua LIU ; Si-Heng SHEN ; Lu-Yong JIAN ; Qi YUAN ; Hua-Hui GUO ; Jia-Sheng HUANG ; Peng-Hui CHEN ; Ren-Fa HUANG
Chinese journal of integrative medicine 2023;29(10):875-884
OBJECTIVE:
To investigate protective effect of Cordyceps sinensis (CS) through autophagy-associated adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway in acute kidney injury (AKI)-induced acute lung injury (ALI).
METHODS:
Forty-eight male Sprague-Dawley rats were divided into 4 groups according to a random number table, including the normal saline (NS)-treated sham group (sham group), NS-treated ischemia reperfusion injury (IRI) group (IRI group), and low- (5 g/kg·d) and high-dose (10 g/kg·d) CS-treated IRI groups (CS1 and CS2 groups), 12 rats in each group. Nephrectomy of the right kidney was performed on the IRI rat model that was subjected to 60 min of left renal pedicle occlusion followed by 12, 24, 48, and 72 h of reperfusion. The wet-to-dry (W/D) ratio of lung, levels of serum creatinine (Scr), blood urea nitrogen (BUN), inflammatory cytokines such as interleukin- β and tumor necrosis factor- α, and biomarkers of oxidative stress such as superoxide dismutase, malonaldehyde (MDA) and myeloperoxidase (MPO), were assayed. Histological examinations were conducted to determine damage of tissues in the kidney and lung. The protein expressions of light chain 3 II/light chain 3 I (LC3-II/LC3-I), uncoordinated-51-like kinase 1 (ULK1), P62, AMPK and mTOR were measured by Western blot and immunohistochemistry, respectively.
RESULTS:
The renal IRI induced pulmonary injury following AKI, resulting in significant increases in W/D ratio of lung, and the levels of Scr, BUN, inflammatory cytokines, MDA and MPO (P<0.01); all of these were reduced in the CS groups (P<0.05 or P<0.01). Compared with the IRI groups, the expression levels of P62 and mTOR were significantly lower (P<0.05 or P<0.01), while those of LC3-II/LC3-I, ULK1, and AMPK were significantly higher in the CS2 group (P<0.05 or P<0.01).
CONCLUSION
CS had a potential in treating lung injury following renal IRI through activation of the autophagy-related AMPK/mTOR signaling pathway in AKI-induced ALI.
Rats
;
Male
;
Animals
;
AMP-Activated Protein Kinases/metabolism*
;
Cordyceps/metabolism*
;
Rats, Sprague-Dawley
;
Kidney/pathology*
;
Acute Kidney Injury/metabolism*
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Reperfusion Injury/metabolism*
;
Cytokines/metabolism*
;
Acute Lung Injury/drug therapy*
;
Mammals/metabolism*
6.Wedelolactone alleviates hyperoxia-induced acute lung injury by regulating ferroptosis.
Junya LIU ; Song QIN ; Banghai FENG ; Miao CHEN ; Hong MEI
Chinese Critical Care Medicine 2023;35(11):1177-1181
OBJECTIVE:
To study whether wedelolactone can reduce hyperoxia-induced acute lung injury (HALI) by regulating ferroptosis, and provide a basic theoretical basis for the drug treatment of HALI.
METHODS:
A total of 24 C57BL/6J mice were randomly divided into normal oxygen control group, HALI model group and wedelolactone pretreatment group, with 8 mice in each group. Mice in wedelolactone pretreatment group were treated with wedelolactone 50 mg/kg intraperitoneally for 6 hours, while the other two groups were not given with wedelolactone. After that, the HALI model was established by maintaining the content of carbon dioxide < 0.5% and oxygen > 90% in the molding chamber for 48 hours, and the normal oxygen control group was placed in indoor air. After modeling, the mice were sacrificed and lung tissues were collected. The lung histopathological changes were observed under light microscope and pathological scores were performed to calculate the ratio of lung wet/dry mass (W/D). The levels of tumor necrosis factor-α (TNF-α), interleukins (IL-6, IL-1β), superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) in lung tissues of mice in each group were determined. The protein expression of glutathione peroxidase 4 (GPX4) in lung tissue was detected by Western blotting.
RESULTS:
Under light microscope, the alveolar structure of HALI model group was destroyed, and a large number of neutrophils infiltrated the alveolar and interstitial lung, and the interstitial lung was thickened. The pathological score of lung injury (score: 0.75±0.02 vs. 0.11±0.01) and the ratio of lung W/D (6.23±0.34 vs. 3.68±0.23) were significantly higher than those in the normal oxygen control group (both P < 0.05). Wedelolactone pretreated mice had clear alveolar cavity and lower neutrophil infiltration and interstitial thickness than HALI group. Pathological scores (score: 0.43±0.02 vs. 0.75±0.02) and W/D ratio (4.56±0.12 vs. 6.23±0.34) were significantly lower than HALI group (both P < 0.05). Compared with the normal oxygen control group, the levels of SOD (kU/g: 26.41±4.25 vs. 78.64±3.95) and GSH (mol/g: 4.51±0.33 vs. 12.53±1.25) in HALI group were significantly decreased, while the levels of MDA (mmol/g: 54.23±4.58 vs. 9.65±1.96), TNF-α (μg/L: 96.32±3.67 vs. 11.65±2.03), IL-6 (ng/L: 163.35±5.89 vs. 20.56±3.63) and IL-1β (μg/L: 72.34±4.64 vs. 15.64±2.47) were significantly increased, and the protein expression of GPX4 (GPX4/β-actin: 0.44±0.02 vs. 1.00±0.09) was significantly decreased (all P < 0.05). Compared with the HALI group, the levels of SOD (kU/g: 53.28±3.69 vs. 26.41±4.25) and GSH (mol/g: 6.73±0.97 vs. 12.53±1.25) were significantly higher in the wedelolactone pretreatment group, and the levels of MDA (mmol/g: 25.36±1.98 vs. 54.23±4.58), TNF-α (μg/L: 40.25±4.13 vs. 96.32±3.67), IL-6 (ng/L: 78.32±4.65 vs. 163.35±5.89), and IL-1β (μg/L: 30.65±3.65 vs. 72.34±4.64) were significantly lower (all P < 0.05), and protein expression of GPX4 was significantly higher (GPX4/β-actin: 0.68±0.04 vs. 0.44±0.02, P < 0.05).
CONCLUSIONS
Wedelolactone attenuates HALI injury by regulating ferroptosis.
Mice
;
Animals
;
Hyperoxia
;
Ferroptosis
;
Tumor Necrosis Factor-alpha
;
Interleukin-6
;
Actins
;
Mice, Inbred C57BL
;
Acute Lung Injury/drug therapy*
;
Lung
;
Oxygen
;
Superoxide Dismutase
7.Basic research and clinical innovative treatment in patients with sudden mass phosgene poisoning.
Chinese Critical Care Medicine 2023;35(12):1233-1240
Phosgene is not only a dangerous asphyxiating chemical warfare agent, but also an important chemical raw material, which is widely used in chemical production. According to statistics, there are more than 1 000 phosgene production enterprises in China, with an annual production volume of more than 3 million tons and hundreds of thousands of employees. Therefore, once the leakage accident occurs during production, storage and transportation, it often causes a large number of casualties. In the past 20 years, phosgene poisoning accidents in China have occurred from time to time, and due to the weak irritation, high density, and high concentration of phosgene at the scene of the accident, it often results in acute high-concentration inhalation of the exposed, triggering acute lung injury (ALI), and is very likely to progress to acute respiratory distress syndrome (ARDS), with a mortality rate up to 40%-50%. In view of the characteristics of sudden, mass, concealed, rapid and highly fatal phosgene, and the mechanism of its toxicity and pathogenicity is still not clear, there is no effective treatment and standardized guidance for the sudden group phosgene poisoning. In order to improve the efficiency of clinical treatment and reduce the mortality, this paper has summarized the pathophysiological mechanism of phosgene poisoning, clinical manifestations, on-site treatment, research progress, and innovative clinical therapies by combining the extensive basic research on phosgene over the years with the abundant experience in the on-site treatment of sudden mass phosgene poisoning. This consensus aims to provide guidance for the clinical rescue and treatment of patients with sudden mass phosgene poisoning, and to improve the level of treatment.
Humans
;
Phosgene
;
Chemical Warfare Agents
;
Acute Lung Injury/drug therapy*
;
Respiratory Distress Syndrome/therapy*
;
Treatment Outcome
8.Xuebijing alleviates LPS-induced acute lung injury by downregulating pro-inflammatory cytokine production and inhibiting gasdermin-E-mediated pyroptosis of alveolar epithelial cells.
Cuiping ZHANG ; Xiaoyan CHEN ; Tianchang WEI ; Juan SONG ; Xinjun TANG ; Jing BI ; Cuicui CHEN ; Jian ZHOU ; Xiao SU ; Yuanlin SONG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(8):576-588
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterized by diffuse alveolar injury primarily caused by an excessive inflammatory response. Regrettably, the lack of effective pharmacotherapy currently available contributes to the high mortality rate in patients with this condition. Xuebijing (XBJ), a traditional Chinese medicine recognized for its potent anti-inflammatory properties, exhibits promise as a potential therapeutic agent for ALI/ARDS. This study aimed to explore the preventive effects of XBJ on ALI and its underlying mechanism. To this end, we established an LPS-induced ALI model and treated ALI mice with XBJ. Our results demonstrated that pre-treatment with XBJ significantly alleviated lung inflammation and increased the survival rate of ALI mice by 37.5%. Moreover, XBJ substantially suppressed the production of TNF-α, IL-6, and IL-1β in the lung tissue. Subsequently, we performed a network pharmacology analysis and identified identified 109 potential target genes of XBJ that were mainly involved in multiple signaling pathways related to programmed cell death and anti-inflammatory responses. Furthermore, we found that XBJ exerted its inhibitory effect on gasdermin-E-mediated pyroptosis of lung cells by suppressing TNF-α production. Therefore, this study not only establishes the preventive efficacy of XBJ in ALI but also reveals its role in protecting alveolar epithelial cells against gasdermin-E-mediated pyroptosis by reducing TNF-α release.
Animals
;
Mice
;
Alveolar Epithelial Cells
;
Pyroptosis
;
Gasdermins
;
Lipopolysaccharides/adverse effects*
;
Tumor Necrosis Factor-alpha
;
Acute Lung Injury/drug therapy*
;
Respiratory Distress Syndrome
10.Effects of Nintedanib associated with Shenfu Injection on paraquat-induced lung injury in rats.
Hai Na LI ; Chang LIU ; Jin Zhua WANG ; Jia An SUN ; Chao LAN ; Ming Ke LIU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(2):81-86
Objective: To study the effects of Nintedanib associated with Shenfu Injection on lung injury induced by paraquat (PQ) intoxication. Methods: In September 2021, a total of 90 SD rats were divided into 5 groups in random, namely control group, PQ poisoning group, Shenfu Injection group, Nintedanib group and associated group, 18 rats in each group. Normal saline was given by gavage route to rats of control group, 20% PQ (80 mg/kg) was administered by gavage route to rats of other four groups. 6 hours after PQ gavage, Shenfu Injection group (12 ml/kg Shenfu Injection), Nintedanib group (60 mg/kg Nintedanib) and associated group (12 ml/kg Shenfu Injection and 60 mg/kg Nintedanib) were administered with medicine once a day. The levels of serum transforming growth factor beta1 (TGF-β1), interleukin-1 beta (IL-1β) were determined at 1, 3 and 7 d, respectively. The pathological changes of lung tissue, the ratio of wet weight and dry weight (W/D) of lung tissue, the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in lung tissue were observed and determined after 7 d. Western blot was used to analyse the expression levels of fibroblast growth factor receptor 1 (FGFR1), platelet derivation growth factor receptor alpha (PDGFRα), vascular endothelial growth factor receptor 2 (VEGFR2) in lung tissue after 7 d. Results: The levels of TGF-β1, IL-1β in all poisoning groups went up first and then went down. The levels of TGF-β1, IL-1β in associated group at 1, 3, 7 d were lower than that of PQ poisoning group, Shenfu Injection group and Nintedanib group at the same point (P<0.05). Pathological changes of lung tissue under the light microscopes showed that the degrees of hemorrhage, effusion and infiltration of inflammatory cells inside the alveolar space of Shenfu Injection group, Nintedanib group and associated group were milder than that of PQ poisoning group, and the midest in associated group. Compared with control group, the W/D of lung tissue was higher, the level of MDA in lung tissue was higher, while the level of SOD was lower, the expressions of FGFR1, PDGFRα and VEGFR2 in lung tissue were higher in PQ poisoning group (P<0.05). Compared with PQ poisoning group, Shenfu Injection group and Nintedanib group, the W/D of lung tissue was lower, the level of MDA in lung tissue was lower, while the level of SOD was higher, the expressions of FGFR1, PDGFRα and VEGFR2 in lung tissue were lower in associated group (P<0.05) . Conclusion: Nintedanib associated with Shenfu Injection can relieve lung injury of rats induced by PQ, which may be related to Nintedanib associated with Shenfu Injection can inhibit the activation of TGF-β1 and the expressions of FGFR1, PDGFRα, VEGFR2 in lung tissue of rats.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Paraquat
;
Transforming Growth Factor beta1
;
Receptor, Platelet-Derived Growth Factor alpha
;
Vascular Endothelial Growth Factor A
;
Acute Lung Injury/drug therapy*

Result Analysis
Print
Save
E-mail